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Synopsis We develop a model of latch-mediated spring actuated (LaMSA) systems relevant to comparative biomechanics 
and bioinspired design. The model contains five components: two motors (muscles), a spring, a latch, and a load mass. One 
motor loads the spring to store elastic energy and the second motor subsequently removes the latch, which releases the spring 
and causes movement of the load mass. We develop freely available software to accompany the model, which provides an 
extensible framework for simulating LaMSA systems. Output from the simulation includes information from the loading and 
release phases of motion, which can be used to calculate kinematic performance metrics that are important for biomechanical 
function. In parallel, we simulate a comparable, directly actuated system that uses the same motor and mass combinations as 
the LaMSA simulations. By rapidly iterating through biologically relevant input parameters to the model, simulated kinematic 
performance differences between LaMSA and directly actuated systems can be used to explore the evolutionary dynamics of 
biological LaMSA systems and uncover design principles for bioinspired LaMSA systems. As proof of principle of this concept, 
we compare a LaMSA simulation to a directly actuated simulation that includes either a Hill-type force-velocity trade-off or 
muscle activation dynamics, or both. For the biologically-relevant range of parameters explored, we find that the muscle force- 
velocity trade-off and muscle activation have similar effects on directly actuated performance. Including both of these dynamic 
muscle properties increases the accelerated mass range where a LaMSA system outperforms a directly actuated one. 
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Xu and Bhamla 2019 ; Li et al. 2020 ; Singh et al. 2020 ; 
Büsse et al. 2021 ), have been used to test hypothe- 
ses about the movement of specific organisms ( Table 1 
summarizes examples of recent work). 

In contrast to organism-specific models, “simple 
models” with reduced complexity ( Anderson et al. 
2020 ) are primarily used for making inter-species 
comparisons, and for testing scaling relationships 
and the sensitivity of kinematic performance to dif- 
ferent characteristics of the organism. These sim- 
ple models can also have broad applicability and 

enable the rapid testing of ideas ( Anderson et al. 
2020 ), and typically include muscle motors, springs, 
masses, and other mechanical linkages. In recent work, 
these models have been applied to jumping organisms 
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 diverse array of organisms use stored elastic energy
o drive rapid movements. These organisms use motors,
prings, and latches to perform a latch mediated spring
ctuated (LaMSA) motion, and remarkably, they can
se this mechanism to outperform current engineering
esign for repeatable motion at small size-scales ( Longo
t al. 2019 ). Models have been developed to under-
tand the extreme biomechanics of LaMSA organisms.
rganism-specific models, including both continuum
echanics-based models ( Liu et al. 2017 ; Cooper et al.
018 ; Larabee et al. 2018 ; Tadayon et al. 2018 ; Bolmin
t al. 2019 ; Berg et al. 2019 ; Hamlet et al. 2020 ; Li et al.
020 ; Wan and Hao 2020 ) and physical modeling with

iomimetic devices ( Cox et al. 2014 ; Liu et al. 2017 ; 
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Table 1 Recent examples (since 2018) of modeling LaMSA organisms, which includes both mathematical and physical approaches. For a re vie w 

of earlier work see ref. ( Ilton et al. 2018 ). 

Modeling approach Biomechanical system Reference 

Continuum mechanics 

beam bending model click beetle latch Bolmin et al. (2019 ) 

fluid dynamics bladderwort trap suction feeding Berg et al. (2019 ) 

Ruellia ciliatiflora seed aerodynamics Cooper et al. (2018 ) 

nematocyst discharge Hamlet et al. (2020 ) 

finite elements locust jump Wan and Hao (2020 ) 

dracula ant mandible strike Larabee et al. (2018 ) 

mantis shrimp strike Tadayon et al. (2018 ) 

Oxalis sp. seed ejection Li et al. (2020 ) 

Physical modeling 

Oxalis sp. seed ejection Li et al. (2020 ) 

bladderwort trap suction feeding Singh et al. (2020 ) 

dragonfly larvae strike Büsse et al. (2021 ) 

Spirostomum ambiguum contraction Xu and Bhamla (2019 ) 
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( Davranoglou et al. 2019 ; Jarur et al. 2019 ; Niechciał
et al. 2019 ; Olberding et al. 2019 ; Sutton et al. 2019 ;
Hong et al. 2020 ; Mo et al. 2020 ; Zhang et al. 2020 ) and
augmented human movements ( Sutrisno and Braun 

2019 , 2020 ). General models have also been used to test 
hypotheses about the scaling and effectiveness of bio- 
logical spring mechanisms ( Galantis and Woledge 2003 ; 
Ilton et al. 2018 ; Abbott et al. 2019 ; Sutton et al. 2019 ;
Divi et al. 2020 ). These types of models have similari- 
ties to template models—simple biomechanical models 
that demonstrate a particular mechanical behavior ( Full 
and Koditschek 1999 ). 

Previous work used a simplified mathematical 
model to illustrate trade-offs between the components 
of a general LaMSA system ( Ilton et al. 2018 ). The com- 
ponents of a LaMSA system (the latch, spring, loading 
motor, and load mass) were modeled as a simplified 

mechanical system and given material, geometric, 
and dynamic properties; however, the properties of 
the system components were limited to motors and 

springs with linear properties, specific latch shapes, 
frictionless interactions between components, and a 
fixed unlatching velocity. 

Here, we develop a LaMSA Template Model with ac- 
companying software. Our model here includes a more 
general framework for defining LaMSA components, 
such that previous LaMSA modeling efforts ( Galantis 
and Woledge 2003 ; Ilton et al. 2018 ; Sutton et al. 2019 ;
Divi et al. 2020 ) are all particular cases of this new 

model. This broader approach allows the model to be 
uned to a specific organism, group of organisms, or
 biological scaling relationship to explore questions
n comparative biomechanics and LaMSA system
esign. Our approach also includes non-linear and
ime-dependent properties of the spring material dur-
ng unloading. Additionally, we provide a generalized
reatment of the latch that includes friction, allows
or different latch shapes, and includes an unlatching
otor that drives the latch removal of the system,
imilar to the one recently hypothesized to occur in
ome biological systems ( Büsse et al. 2021 ). 
Finally, as an example of this LaMSA model’s utility,
e use the model to explore how dynamic muscle prop-
rties affect the power output of both a LaMSA system
nd a system where the muscle is used to directly
ctuate movement. Two important dynamic aspects of
uscle are a force-velocity trade-off (the muscle exerts

ess force at higher velocities) and an activation rate (it
akes some time for the muscle to reach its maximum
orce) ( Rosario et al. 2016 ). Previous work has been
ocused on how muscle force-velocity trade-offs limit
ower output for a directly actuated system ( Galantis
nd Woledge 2003 ; Ilton et al. 2018 ). This force-velocity
rade-off is a principal reason LaMSA systems can out-
erform comparable muscle-driven ones at small load
ass; however, it is unclear how significant this force-
elocity effect is compared to the activation dynamics
f muscle. Here, we directly compare the effect of the
uscle force-velocity trade-off to the effect of muscle
ctivation. Using the LaMSA Template Model with
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Fig. 1 Schematic description of the LaMSA Template Model with a loading motor, spring, latch, unlatching motor, and load mass. (A) The 
sequence of important events during the movement of a LaMSA system, which includes three delineated phases of motion in the model: 
loading, unlatching, and spring actuation. (B) The properties of the components used in the LaMSA Template Model, and an example of 
each component that is explored in this work (see Table A1 in Appendix A for the specific example functions and parameters used in this 
manuscript). 
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nputs guided by biologically-relevant sizes and masses,
e find that the muscle force-velocity trade-off and
ctivation dynamics cause a similar reduction in di-
ectly actuated kinematics. Combining the two effects,
he mass range where a LaMSA system outperforms a
irectly actuated one increases by a factor of ≈5 times
ompared to systems where only one of the two time
ependent motor properties is included. 

ethods 
aMSA Template Model 

n our model, the motion of a LaMSA system is com-
osed of three distinct phases: loading, unlatching, and
pring actuation. In the loading phase ( Fig. 1 A, first
anel), a loading motor (e.g., muscle) deforms a spring
tarting from the spring’s stress-free equilibrium length.
e make the simplifying assumption that the loading
ccurs slowly enough to approximate it as a quasi-static
otor contraction—that is, the loading follows the iso-
etric force-length curve in the case of a muscle mo-

or. Loading is complete when the loading motor force
ulling down (in the −y direction) matches the spring
orce pulling up. After the loading phase, the loading
otor remains at a fixed displacement and the spring

s held in place by a latch ( Fig. 1 A, second panel). The
econd phase of motion, the unlatching phase ( Fig. 1 A,
hird panel), begins with the activation of an unlatching
motor that pulls the latch out of the way. During the un-
latching phase the load mass and latch undergo a com-
plex interaction. The interaction between the load mass
and latch is modeled as a frictional contact between two
rigid bodies, and the unlatching phase ends when there
is no longer any contact between the load mass and
latch. Once the contact breaks, the load mass is actuated
solely by the spring, which undergoes a rapid unloading
( Fig. 1 A, fourth panel). Spring actuation continues un-
til the spring returns to its equilibrium length where it
no longer applies a force to the load mass, which corre-
sponds to the “take-off” of the load mass ( Fig. 1 A, fifth
panel). In the model, we assume that the latch shape
is sufficiently smooth that after the latch disengages, it
does not re-engage at a later time. This assumption en-
ables the clear delineation of the unlatching and spring
actuation phases. 

The dynamics of a LaMSA system depends on its
components and the interaction between them. In our
model, these components are classified into motors,
springs, latches, and load masses ( Fig. 1 B). Each mo-
tor is constrained to move along a single coordinate
axis in the model (the loading motor moves along the
y axis; the latch and unlatching motor move along
the x axis). We develop our model with the aim to
give general properties to each component. The motors
and springs in the LaMSA system are characterized by
their force output. The loading motor force ( F lm 

), the
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unlatching motor force ( F um 

), and spring force ( F sp ) are 
all assumed to be functions of time, displacement, and 

velocity. Latches are given a shape function y L ( x ) that 
describes the geometry of the latch. The shape func- 
tion relates horizontal motion of the latch (in the x di- 
rection) to vertical displacements of the load (in the y 
direction). For example, the rounded latch used in this 
work, which has circular edges of radius R , has a shape 
function shown in Fig. 1 B. The shape function describes 
the shape of the latch where it contacts the load mass. 
The derivatives of this shape function with respect to 
x determine the latch slope function y L ′ (x) = 

dy L 
dx and 

latch concavity y L ′′ (x) = 

d 2 y L 
dx 2 . The functions describ- 

ing shapes and forces are taken as inputs into the model 
to allow for hypothesis testing of non-linear proper- 
ties. In addition, the mass of the system can be dis- 
tributed in the spring mass, latch mass, and load mass. 
With these definitions, we lay out the mathematical de- 
scription of the model according to its three phases of 
motion. 

LaMSA Template Model: Loading Phase 

In the loading phase, the loading motor slowly applies a 
force causing a displacement of the spring. The final dis- 
placement of the spring at the end of the loading phase, 
y 0 , is the displacement in which the loading motor force 
and spring force are equal and opposite, namely 

F lm 

(t = ∞ , y 0 , ̇  y = 0) = −F sp (t = ∞ , y 0 , ̇  y = 0) , (1) 

where ˙ y is the velocity in the y direction. The condition 

that t = ∞ and 

˙ y = 0 corresponds to a slow, quasi-static 
loading of the spring. The loaded displacement, y 0 , de- 
pends on how the force-displacement properties of the 
loading motor and spring interact. 

LaMSA Template Model: Unlatching Phase 

The unlatching phase starts with the activation of the 
unlatching motor at time t = 0. The spring starts with 

an initial displacement y 0 and velocity ˙ y = 0 , while the 
latch has an initial horizontal position x = 0 and velocity 
˙ x = v 0 . By analyzing the spring force acting on the load 

mass, the unlatching motor force pulling on the latch, 
and the contact force between the load mass and latch, 
we derive that the differential equation for the accelera- 
tion of the latch, ẍ , during the unlatching phase of mo- 
tion 

ẍ = 

(F um + F sp y ′ L − m effy ′ L y ′′ L ̇  x 2 ) + μk (F um y ′ L − F sp + m effy ′′ L ̇  x 2 ) 
(m L + m eff(y ′ L ) 2 ) − μk (m effy ′ L − m L y ′ L ) 

, 

(2) 

where μk is the coefficient of friction between the latch 

and load, and m is the mass of the latch. The term m 
L eff
n Equation (2) is the overall effective mass for the mass-
pring system, with m eff = m load + m s /3 ( Ilton et al.
018 ), where m s is the spring mass and m load is the ef-
ective load mass that depends on load mass and its ef-
ective mechanical advantage (EMA). A full derivation
f Equation (2) is presented in Appendix B for a system
ndergoing small angular displacements. For a LaMSA
ystem undergoing large angular displacements during
otational motion, the effective mass and mapping onto
quation (2) is provided in Appendix C. From the dy-
amics and shape of the latch, the acceleration of the
oad mass during the unlatching phase is given by the
hain rule, 

ÿ = y ′′ L ̇  x 2 + y ′ L ̈x . (3)

o determine the end of the unlatching phase, we solve
or the magnitude of the normal component of the con-
act force between the load mass and latch, 

F N = 

−m L F sp + m L m effy ′′ L ̇  x 2 + m effy ′ L F um 

m effy ′ L μk − m eff (y ′ L ) 2 − m L μk y ′ L − m L 

√ 

1 + (y ′ L ) 2 , 

(4)

nd require that this magnitude be non-negative during
he unlatching phase to ensure there is still contact be-
ween the load mass and latch. Therefore, we solve for
hen F N 

= 0 to determine the unlatching duration t L ,
hich marks the end of the unlatching phase and the
eginning of the spring actuation phase of motion. 

aMSA Template Model: Spring Actuation Phase 

fter unlatching, the load mass undergoes a purely
pring-driven motion given by 

ÿ = 

F sp 
m eff

, (5)

here the spring force can depend on position, ve-
ocity, and time. The initial conditions for this phase
re given by the ending condition from the unlatching
hase: for the spring actuation phase, the initial posi-
ion of the load mass is y ( t = t L ), and its initial velocity
s ˙ y (t = t L ) . The spring actuation phase ends when the
pring stops pushing on the load mass, that is, when F sp
 0. 

irect Actuation Model 

he direct actuation model uses the loading motor of
he LaMSA system to directly drive the load mass. To
nsure the motor in the directly actuated model is be-
ng used in a comparable way to the LaMSA model, the
ass is accelerated by the motor using a motor con-

raction. Therefore, the equation of motion for the load
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Fig. 2 Example output from the model using the components and the biological LaMSA parameters listed in Table A1 . (A) The force-length 
cur ve f or a Hill-type muscle motor loading a tendon-like exponential spring. The LaMSA system loads up to a spring displacement y max calculated 
by equating the loading motor and spring forces. (B-C) The dynamics during the unlatching and spring actuation phases for the latch (panel 
B) and load mass (panel C). The end of the unlatching phase is marked by the pink vertical dotted line showing the unlatching duration ( t L ≈
6 ms), which occurs when the normal force N between the latch and load mass goes to zero (dashed curves in B-C). After unlatching, the load 
mass is actuated solely by the spring up until take-off duration ( t to ≈ 7.5 ms) when the spring force goes to zero, and the load mass reaches 
its take-off velocity ( v to ≈ 0.4 m/s). 
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ass is given directly by the force applied by the motor
s it contacts, 

ÿ = 

F lm 

m eff
, (6)

here the loading motor force can depend on position,
elocity, and time. The initial condition for the directly
ctuated system is that the motor and load mass are ini-
ially at rest, with the motor at its undisplaced initial
ength. Take-off occurs when the load mass reaches its
aximum velocity and F lm 

= 0. 

aMSA and Direct Actuation Software 
mplementation 

he LaMSA and direct actuation models were
mplemented in MATLAB. This software imple-
entation is freely redistributable and available at
ttps://posmlab.github.io ( Didcock et al. 2020 ). The
oftware allows a user to select a LaMSA system from
 library of components (motors, springs, latches, and
oad masses), set parameters for each component,
nd run a simulation to determine the dynamics of
hat system (as both a LaMSA system and a directly
ctuated system). The software can be used to iterate
over the LaMSA system component parameters (e.g.,
spring stiffness) and rapidly generate the dynamics for
variety of LaMSA systems. 

Model Input Parameters 

The input parameters to the model were chosen based
on the accelerated mass, characteristic velocities, and
typical accelerations of the larger biological LaMSA sys-
tems listed in the supplementary materials of ref. ( Ilton
et al. 2018 ). To explore the role of the dynamic proper-
ties of muscle, we used a Hill-type muscle motor based
on ref. ( Rosario et al. 2016 ), which is one of the default
components included in the LaMSA Template Model
software. A muscle activation rate of 200 s −1 was cho-
sen as a typical rate based on the force generation de-
lay of small animals reported in ref. ( More and Donelan
2018 ). The full list of parameters used in this work are
reported in Table A1 . 

Results and Discussion 

Using the components and parameters in Table A1 , the
output from a single simulation generated using the
software is shown in Fig. 2 . The software output in-
cludes information about the loading phase, and the dy-
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Fig. 3 Both a motor’s activation rate and its force-velocity trade-off
affect its maximum power output when it directly actuates a pro- 
jectile. Compared to a using a motor in a LaMSA system (blue solid 
curve), the maximum power output of a directly actuated system 

(red curves) is worse for smaller masses. A motor that has both a 
force-velocity and activation limitation (solid red curve) has a signif- 
icantly reduced perf or mance at low masses compared to one with 
only a force-velocity trade-off (dashed red curve) or only an activa- 
tion rate limitation (dotted red curve). The intersection between the 
LaMSA and directly actuated curve shifts to a higher mass when both 
d ynamic effects of the motor are included. 
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namics of the latch and load mass during the unlatching 
and spring actuation phases. For the load mass dynam- 
ics, the simulation generates the position y ( t ), velocity 
˙ y (t ) , and forces acting on the load mass. From the posi- 
tion and velocity of the load mass, commonly used met- 
rics for kinematic performance in biomechanics (e.g., 
maximum acceleration and maximum power ( Longo 
et al. 2019 )) are calculated. The maximum load mass 
acceleration ( max | ̈y (t ) | , calculated from the numerical 
derivative of ˙ y (t ) ) and maximum power delivered 

to the load mass ( P max = max | m ̈y (t ) ̇  y (t ) | ) depend
on the input parameters to the model, and the freely 
redistributable software enables a rapid iteration over a 
range of input parameters. 

For a motor directly actuating a load mass, the max- 
imum power output depends on accelerated mass, with 

an upper bound set by the dynamic properties of the 
motor ( Fig. 3 , red curves). Driving the mass with a 
motor that has only a force-velocity trade-off (setting 
r act = ∞ and vmax = 5 m/s in the model) has a sim- 
ilar effect to a motor that only has activation dynam- 
ics (setting r act = 200 s −1 and vmax = ∞ in the model). 
Both motors reach an upper bound on their maximum 

power output when driving small masses ( Fig. 3 , dashed 

and dotted red curves). Therefore, even in the absence 
of a force-velocity trade-off, motors with slow activa- 
tion rates still have performance limitations when driv- 
ing small masses. Including both the effects of force- 
elocity and activation in the motor, as projectile mass
s decreased the maximum power output of a directly
ctuated movement not only saturates to a maximum
alue, but further decreases for the smallest masses
 Fig. 3 , solid red curve). 
In contrast to the directly actuated systems, the

aMSA system is insensitive to the force-velocity trade-
ffs and activation dynamics of the loading motor.
arying the loading motor in the LaMSA system us-
ng the same three conditions as the directly actuated
ne (activation dynamics only, F-v trade-off only, F-v
rade-off and activation dynamics), the maximum out-
ut for those three LaMSA systems is identical ( Fig. 3 ,
olid blue curve). The independence of the LaMSA sys-
em on the dynamic properties of the loading motor is a
esult of the slow, quasi-static loading assumption made
n the model. This assumption is justified for biological
aMSA systems like mantis shrimp where typical load-
ng rates are orders of magnitude slower than the rate of
lastic energy release ( Patek 2019 ), but the loading mo-
or dynamic properties can be important when consid-
ring simultaneous loading and release of a series elastic
ystem ( Galantis and Woledge 2003 ). 
The power output of comparable LaMSA and di-

ectly actuated systems have a mass dependent transi-
ion that is affected by the dynamic properties of the
otor. Comparing the three different motor conditions

n Fig. 3 , the crossovers between the power output of
he directly actuated and LaMSA systems is shifted to
 larger mass (by a factor of ≈5 times) when both the
orce-velocity and activation dynamics of the motor are
ncluded in the simulation. This result suggests that in
ystems where there is a development and transition
f a LaMSA mechanism (e.g., in some species of man-
is shrimp ( Harrison et al. 2021 )), care should be given
o both muscle force-velocity and activation dynamics
hen modeling the transition from LaMSA to directly
ctuated movement. 
Although the results of Fig. 3 were generated us-

ng general, biologically-relevant parameter values
or LaMSA systems, a more specific biological sys-
em could be used to guide further inquiry into the
elative importance of force-velocity versus muscle
ctivation dynamics. For example, although here we
ssumed a fixed value of EMA = 1, the mechanical
dvantage in both muscle-driven and spring-driven
ystems can significantly alter dynamics ( Richards and
lemente 2012 ; Olberding et al. 2019 ). Decreasing
he EMA in the current model shifts the drop-off
n muscle-driven performance to smaller masses. In
ddition, for most biologically-relevant systems max-
mum muscle force typically increases as system size
ncreases. With a specific system in mind, appropriate
caling ( Rospars and Meyer-Vernet 2016 ) and fair
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omparisons ( Ilton et al. 2019 ) could be made across
ize-scales for both motor-driven and elastically-driven
ystems. 
Beyond this proof of principle example, the LaMSA

emplate Model and freely redistributable software
rovides an extensible platform for exploring biologi-
al LaMSA systems. Although this model was formu-
ated generally to encompass a broad range of LaMSA
ystems, the model can be tuned to specific biolog-
cal systems because of the flexibility in how system
omponents are defined. The relevant range of input
arameters and any interdependence between them
an be informed by observed biological data and
caling. For example, depending on the system, the
haracteristic lengths of the system (i.e., muscle lengths,
atch radius, spring length) could be constrained in
he model to follow an isometric scaling. The soft-
are allows the user to enforce mathematical couplings
etween the different input parameters to the model,
hich can be used make inter-species comparisons and
o investigate to what extent kinematic performance
hanges over the course of development for a given
pecies. 
Flexible component definitions also enables new

omponents to be created that address specific biolog-
cal questions. For example, Deban et al. performed
 comparative analysis of tongue projection across
alamander species which actuate their tongue pro-
ection with a LaMSA mechanism or by direct muscle
ctuation ( Deban et al. 2020 ). The LaMSA projection
echanism can not only lead to higher kinematic
erformance, but is also robust to temperature vari-
tions ( Deban et al. 2020 ). To explore this system
ith the LaMSA model presented here, new compo-
ents can be created in the software that introduce
 temperature-dependent motor and spring. Adding
hese components would yield a theoretical predic-
ion of the relative sensitivity of the tongue projection
erformance to temperature for the two groups of sala-
anders. Comparing this prediction to the observed
inematics could be used to inform the modeling of
ow biological motors and springs depend on temper-
ture. As an additional example, Acharya et al. built on
he general LaMSA framework here to include non-
inear soft frictional latches to understand the ultrafast
otion of human finger snaps ( Acharya et al. 2021 ). 
Finally, the model and software presented here can

ffer insights into how the interrelationships between
nput parameters and performance may influence the
volution of these biological systems via the concept of
echanical sensitivity. Mechanical sensitivity refers to

he idea that variation between parts of a multi-part
ystem are not necessarily equal in relation to their
nfluence on the output of the system ( Koehl 1996 ;
Anderson and Patek 2015 ). Applied to a LaMSA sys-
tem, we might hypothesize that variation in the spring
would result in a larger variation in maximum power
than variation in the latch mass. If so, that could mean
that the latch mass has more freedom to evolve without
altering performance. Such patterns have been iden-
tified in both mantis shrimp and fish ( Anderson and
Patek 2015 ; Hu et al. 2017 ) and have been shown to in-
fluence rates of morphological evolution ( Muñoz et al.
2017 , 2018 ; Muñoz 2019 ). The model presented here of-
fers an opportunity to quantitatively map how shifts in
input parameters affect multiple performance metrics
simultaneously, allowing for a comprehensive analysis
of mechanical sensitivity. 

Conclusion 

The LaMSA Template Model and software presented
here balances modeling principles of simplicity and ex-
tensibility. Simplicity is provided by making explicit as-
sumptions about how the components are connected
in the model, and extensibility is achieved though flex-
ibility of defining the individual components. With
these principles, the model enables the rapid testing of
ideas by simulating kinematic output across the varying
model parameters. This model also opens possible new
directions for future work by providing a framework
for others to build upon. Case studies using the model
will inform best practices for tuning the model to ex-
plore a specific biological system. Exploring biological
and bioinspired LaMSA systems with this model will re-
quire input from members of comparative biomechan-
ics community through the use of the software (avail-
able at https://posmlab.github.io ( Didcock et al. 2020 )),
requesting new features, and actively contributing to
software development. 

Acknowledgments 
The authors thank S.N. Patek and Justin Jorge for stimu-
lating discussions and helpful suggestions on this work.

Funding 

This work was supported by the National Science Foun-
dation under Grant no. 2019371. We thank the Harvey
Mudd College Physics Summer Research Fund and the
N. Sprague III Experiential Learning Fund for financial
support. MSB acknowledges funding support from NSF
Career 1941933 and NIH R35GM142588. 

Author contributions 
AC and MI designed the research; all authors con-
tributed to the model development; AC, KP, MAA, AW,
RLD, JTC, DO, RA, and MI wrote the software; AC and



8 Cook et al. 

 

G  

 

 

H  

H  

 

H  

 

H  

 

I  

 

 

I  

 

J  

K  

L  

 

L  

L  

 

L  

 

 

M  

 

 

M  

 

M  

M  

M  

 

M  

 

N  

O  

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/iob/article/4/1/obac032/6652213 by Libraries of the C

larem
ontC

olleges user on 14 D
ecem

ber 2022
MI wrote a first draft of the manuscript; all authors re- 
vised and edited the manuscript. 

Declaration of competing interest 
The authors declare no competing interests. 

Supplementary data 
Supplementary Data available at IOB online. 

References 
Abbott EM, Nezwek T, Schmitt D, Sawicki GS. 2019. 
Hurry up and get out of the way! Exploring the limits of 
muscle-based latch systems for power amplification. Integr 
Comp Biol 59:1546–58. 

Acharya R, Challita EJ, Ilton M, Saad Bhamla M. 2021. The ul- 
trafast snap of a finger is mediated by skin friction. J R Soc 
Interface 18:20210672. 

Anderson PS, Patek SN. 2015. Mechanical sensitivity reveals evo- 
lutionary dynamics of mechanical systems. Proc R Soc B: Biol 
Sci 282:20143088. 

Anderson PSL, Rivera MD, Suarez AV. 2020. “Simple” biome- 
chanical model for ants reveals how correlated evolution 
among body segments minimizes variation in center of mass 
as heads get larger. Integr Comp Biol 60:1193–1207. 

Berg O, Singh K, Hall MR, Schwaner MJ, Müller UK. 2019. 
Thermodynamics of the bladderwort feeding strike—Suction 
power from elastic energy storage. Integr Comp Biol 59:1597–
608. 

Bolmin O, Wei L, Hazel AM, Dunn AC, Wissa A, Alleyne M. 
2019. Latching of the click beetle (Coleoptera: Elateridae) tho- 
racic hinge enabled by the morphology and mechanics of con- 
formal structures. J Exp Biol 222:196683. 

Büsse S., Koehnsen A, Rajabi H, Gorb SN. 2021. A controllable 
dual-catapult system inspired by the biomechanics of the drag- 
onfly larvaes predatory strike. Sci Robot 6:eabc8170. 

Cooper ES, Mosher MA, Cross CM, Whitaker DL. 2018. Gy- 
roscopic stabilization minimizes drag on Ruellia ciliatiflora 
seeds. J R Soc Interface 15:20170901. 

Cox SM, Schmidt D, Modarres-Sadeghi Y, Patek SN. 2014. A 

physical model of the extreme mantis shrimp strike: kinemat- 
ics and cavitation of Ninjabot. Bioinspir Biomim 9:016014. 

Davranoglou LR, Cicirello A, Taylor GK, Mortimer B. 2019. 
Planthopper bugs use a fast, cyclic elastic recoil mechanism for 
effective vibrational communication at small body size. PLoS 
Biol 17:1–17. 

Deban SM, Scales JA, Bloom SV, Easterling CM, O’Donnell 
MK, Olberding PJ. 2020. Evolution of a high-performance and 
functionally robust musculoskeletal system in salamanders. 
Proc Nat Acad Sci United States of America 117:10445–54, 
2020. 

Didcock RL, Pandhigunta K, Ilton M, O’Neill D, Castro 
JT, Zhao A, Cole A, Chen J, Tsai L, Acevedo MA. 
2022. posmlab/lamsa-template-model, URL https://doi.org/ 
10.5281/zenodo.3978584 . 

Divi S, Ma X, Ilton M, St. Pierre R, Eslami B, Patek SN, Berg-
breiter S. 2020. Latch-based control of energy output in spring 
actuated systems. J R Soc Interface 17:20200070. 

Full RJ, Koditschek DE. 1999. Templates and anchors: neurome- 
chanical hypotheses of legged locomotion on land. J Exp Biol 
202:3325–32. 
alantis A, Woledge RC. 2003. The theoretical limits to
the power output of a muscle-tendon complex with iner-
tial and gravitational loads. Proc R Soc B: Biol Sci 270:
1493–98. 
amlet C, Strychalski W, Miller L. 2020. Fluid dynamics of bal-
listic strategies in nematocyst firing. Fluids 5:1–18. 
arrison JS, Porter ML, McHenry MJ, Robinson HE, Patek S.
2021. Scaling and development of elastic mechanisms: the tiny
strikes of larval mantis shrimp. J Exp Biol 224:jeb235465. 
ong C, Tang D, Quan Q, Cao Z, Deng Z. 2020. A com-
bined series-elastic actuator & parallel-elastic leg no-latch bio-
inspired jumping robot. Mech Mach The 149:103814. 
u Y, Nelson-Maney N, Anderson PS. 2017. Common evolu-
tionary trends underlie the four-bar linkage systems of sunfish
and mantis shrimp. Evol 71:1397–405. 

lton M, Saad Bhamla M, Ma X, Cox SM, Fitchett LL, Kim Y, sung
Koh J, Krishnamurthy D, Kuo CY, Temel FZ et al.. 2018. The
principles of cascading power limits in small, fast biological
and engineered systems. Sci 360:aao1082. 

lton M, Cox SM, Egelmeers T, Sutton GP, Patek SN, Crosby AJ.
2019. The effect of size-scale on the kinematics of elastic en-
ergy release. Soft Matter 15:9579–86. 

arur MC, Dumais J, Rica S. 2019. Limiting speed for jumping.
Comptes Rendus—Mecanique 347:305–17. 
oehl MA. 1996. When does morphology matter? Ann Rev Ecol
System 27:501–42. 
arabee FJ, Smith AA, Suarez AV. 2018. Snap-jaw morphology is
specialized for high-speed power amplification in the Dracula
ant, Mystrium camillae. R Soc Open Sci 5:181447. 
i S, Zhang Y, Liu J. 2020. Seed ejection mechanism in an Oxalis
species. Scien Rep 10:1–9. 
iu F, Chavez RL, Patek SN, Pringle A, Feng JJ, Chen CH. 2017.
Asymmetric drop coalescence launches fungal ballistospores
with directionality. J R Soc Interface, 14:20170083. 
ongo SJ, Cox SM, Azizi E, Ilton M, Olberding JP, St Pierre R,
Patek NS. 2019. Beyond power amplification: latch-mediated
spring actuation is an emerging framework for the study of di-
verse elastic systems. J Exp Biol 222:1–10. 
o X, Romano D, Milazzo M, Benelli G, Ge W, Stefanini C.
2020. Impact of different developmental instars on locusta mi-
gratoria jumping performance. App Bio Biomechanics 2020:
27–29. 
onroy JA, Powers KL, Pace CM, Uyeno T, Nishikawa KC. 2017.
Effects of activation on the elastic properties of intact soleus
muscles with a deletion in titin. J Exp Biol 220:828–36. 
ore HL, Donelan JM. 2018. Scaling of sensorimotor delays in
terrestrial mammals. Proc R Soc B 285:20180613. 
uñoz MM. 2019. The Evolutionary Dynamics of Mechanically
Complex Systems. Integ Comp Biol 59:705–15. 
uñoz MM, Anderson PS, Patek SN. 2017. Mechanical sensitiv-
ity and the dynamics of evolutionary rate shifts in biomechan-
ical systems. Proc R Soc B: Biol Sci 284:20162325. 
uñoz MM, Hu Y, Anderson PS, Patek SN. 2018, Strong biome-
chanical relationships bias the tempo and mode of morpho-
logical evolution. eLife, 7:1–18. 
iechciał M, Rybarczyk D, Bu ́skiewicz J. 2019. Modeling the
monopedal robot. IOP Conf Ser: Mat Sci Eng 710:101088. 
lberding JP, Deban SM, Rosario MV, Azizi E. 2019. Model-
ing the determinants of mechanical advantage during jump-
ing: consequences for spring—and muscle-driven movement.
Integ Comp Biol 59:1515–24. 



Template Model for Biological Spring Actuated Systems 9 

P

R

R

R

S

S

 

 

 

 

 

 

 

 

 

 

 

 

 

A

T efau  

b  bio

F

F

L

F

a

F

F

S

l

S

y

D

R

D
ow

nloaded from
 https://academ

ic.oup.com
/iob/article/4/1/obac032/6652213 by Libraries of the C

larem
ontC

olleges user on 14 D
ecem

ber 2022
atek SN. 2019. The Power of Mantis Shrimp Strikes: Interdisci-
plinary impacts of an extreme cascade of energy release. Integ
Comp Biol 59:1573–85. 
ichards CT, Clemente CJ. 2012. A bio-robotic platform for
integrating internal and external mechanics during muscle-
powered swimming. Bioinsp Biom 7:016010. 
osario MV, Sutton GP, Patek SN, Sawicki GS. 2016. Muscle-
spring dynamics in time-limited, elastic movements. Proc R
Soc B: Biol Sci 283:20161561. 
ospars JP, Meyer-Vernet N. 2016. Force per cross-sectional area
from molecules to muscles: a general property of biological
motors. R Soc Open Sci 3:160313. 

ingh K, Reyes RC, Campa GC, Brown MD, Hidalgo F, Berg O,
Müller KU. 2020. Suction flows generated by the carnivorous
bladderwort utricularia comparing experiments with mechan-
ical and mathematical models. Fluids 5:17–22. 

utrisno A, Braun DJ. 2019. Enhancing mobility with quasi-
passive variable stiffness exoskeletons. IEEE Tran Neural Syst
Rehab Eng 27:487–96. 

ppendix A: Table of Parameters Used 

able A1. Mathematical description of the LaMSA components and d
ased on the range of characteristic forces, lengths, and velocities fo

Loading Motor 

orce Function: (ref. ( Rosario et al. 2016 )) 

 lm (t, y, ̇  y ) = F max exp 
(
−

∣∣∣(( L i −y 
L o 

) b − 1) /s 
∣∣∣a ) (

1 − ˙ y / v max 
1+4 ̇ y / v max 

)
min (r act t, 1) 

oading Motor parameters used in this work: 

 max = 20 N v max = { 5 , ∞ } m / s L o = L i = 10 mm 

 = 2.08 b = −2.89 s = −0.75 r act = { 200 , ∞ } s −1 
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orce Function: (ref. ( Monroy et al. 2017 )) 

 sp (t, y, ̇  y ) = 

{
l c k 0 e −y/l c − 1 , for F sp < F s , max 

F s , max , otherwise 

pring parameters used in this work: 

 c = 10 mm k 0 = 2 kN/m F sp, max = 20 N m s = 20 mg 

Latch 

hape Function: (ref. ( Ilton et al. 2018 )) 

 L (x) = R (1 −
√ 

1 − x 2 /R 2 ) 

efault Latch Parameters Used: 

 = 0.2 mm m L = 3 g μk = 0 v 0 = 0 
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Table A1. Continued. 

Unlatching Motor 

Force Function: (ref. ( Ilton et al. 2018 )) 

F um (t, x, ̇  x ) = 

{
F max (1 − ˙ x 

v max 
) , for 0 ≤ x ≤ d 

0 , otherwise 
Unlatching Motor parameters used in this work: 

F max = 0.25 N vmax = 1 m/s d = 5 mm 

Load Mass 

Load Mass parameters used in this work: 

m load = 0 . 1 − 100 kg 

EMA = 1 

Appendix B: Derivation of the Model 
To simplify the model derivation, we will first reduce our general model that can include rotation down to a one- 
dimensional representation. For an applied force F at one end of a rotating rod with a fixed pivot: 

The dynamics of the system is given by relating the applied torque about the pivot to the angular acceleration of 
the rod, 

F L 1 = I ̈θ, (B.1) 

where I is the moment of inertia of the load mass about the fixed pivot point, which for a uniform rod of mass m 

is given by 

I = 

1 
12 

m (L 1 + L 2 ) 2 + m 

(
L 2 − L 1 

2 

)2 
. (B.2) 

If the angular displacement is small (see Appendix for a derivation of the reduced model for large angular 
displacements), then the linear displacement of the point where force is applied y ≈ L 1 θ , can be substituted into 
the equation of motion to give, 

F = 

I 
L 2 1 

ÿ , (B.3) 

which for a uniform load mass simplifies to 

F = m load ̈y , (B.4) 

with the effective load mass 

m load = m 

( 

(1 + 

1 
EMA ) 

2 

12 
+ 

(1 − 1 
EMA ) 

2 

4 

) 

. (B.5) 

In other words, the rotational system reduces down to one-dimensional dynamics of the point of where force is 
applied, but with an effective load mass that takes into account the EMA of the system. 

With that simplification, we consider a reduced complexity one dimensional LaMSA system: 
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Our goal is to derive a single ordinary differential equation describing x(t) of the latch while it is in contact with 

the load mass. 

Setting Up the Problem 

Let us approximate the load mass and latch as point masses and draw isolation diagrams. In this model, we will 
consider the latch to have some shape that governs the unlatching process. Therefore, we have some function y L ( x ) 
that determines the curve of the latch. 

Variables: 
m eff = m load + 

m spring 
3 : the effective mass of the load mass and spring mass combined 

F sp : force exerted by the spring on the load mass 
μk : coefficient of friction between the load mass and the latch 

F N 

: normal force 
F f : force of friction between latch and load mass 

θ : The angle between the normal force vector and the vertical 

Among these variables, we’ll consider the following to be given: 
F sp , μk 

With names for our variables, we can write Newton’s second law to get the following: 
∑ 

F y = m effÿ = F sp − F N y − F f y 

m effÿ = F sp − F N cos θ − μk F N cos (90 − θ ) 

m effÿ = F sp − F N cos θ − μk F N sin θ

Variables: 
m L : mass of the latch 

F um 

: force of the unlatching motor pulling the latch away 
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F N 

: Normal force from load mass on latch 

F f : Friction force from load mass on latch 

y L ( x ) : function describing the latch geometry 

Known Values: 
m L : mass of the latch 

F um 

: force of the unlatching motor pulling the latch away 
y L ( x ) : function describing the latch geometry 

We get the following equations from Newton’s 2nd Law: 
∑ 

F x = m L ( ̈x ) = F um 

+ F N x − F f x 

m L ( ̈x ) = F um 

+ F N sin θ − μk F N sin (90 − θ ) 

m L ( ̈x ) = F um 

+ F N sin θ − μk F N cos θ

Rewriting Unknowns in Terms of Other Variables 

We will use these replacements later in the derivation. 
Rewriting ÿ - Our goal is to get a differential equation for ẍ , but we will end up with ÿ in our equations. So, we 

can use the following to rewrite ÿ in terms of ẍ and the latch curve: 

ÿ = 

d 
dt 

(
dy 
dt 

)

= 

d 
dt 

(
dy 
dx 

· dx 
dt 

)

= 

d 
dt 

(y ′ L · ˙ x ) 

= y ′′ L · ˙ x 2 + y ′ L · ẍ 

Rewriting tan θ - We will need to replace tan θ later in the derivation. 

Because the latch geometry is described by the function y L , the slope of the latch is described by the derivative 
y ′ L . 

y ′ L = 

rise 
run 

tan θ = 

rise 
run 

tan θ = y ′ L 

Solving for ẍ 

S olv ing for F N 

in each equation- Recall that we obtained the following two equations from applying Newton’s 2nd 

Law to both: 

m eff( ̈y ) = F sp − F N cos θ − μk F N sin θ
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m L ( ̈x ) = F um 

+ F N sin θ − μk F N cos θ

Let us replace ÿ with the expression we obtained in the previous section. Now we have 

m eff(y ′′ L · ˙ x 2 + y ′ L · ẍ ) = F sp − F N cos θ − μk F N sin θ (B.6) 

m L ( ̈x ) = F um 

+ F N sin θ − μk F N cos θ (B.7) 

The only element that is not known is F N 

. Let us eliminate it by solving for F N 

in both equations. Solving for F N 

in 

Eq. (B.6) gives us: 

F N = 

F sp − m eff(y ′′ L · ˙ x 2 + y ′ L · ẍ ) 
cos θ + μk sin θ

Solving for F N 

in Eq. (B.7) gives us: 
F N = 

m L ̈x − F um 

sin θ − μk cos θ

Expressing F N 

without using ẍ - While it is our ultimate goal to solve for ẍ , a side goal that is useful for deter- 
mining the end of the unlatching phase is obtaining an expression for F N 

that does not include ẍ . 
We can achieve this by taking Eqs. (B.6) and (B.7) from the previous section, isolating ẍ in each, and setting 

them equal to each other. 
Rearranging Eq. (B.6): 

m eff(y ′′ L · ˙ x 2 + y ′ L · ẍ ) = F sp − F N cos θ − μk F N sin θ

m effy ′ L ̈x = F sp − F N cos θ − μk F N sin θ − m effy ′′ L ̇  x 2 

ẍ = 

F sp − F N cos θ − μk F N sin θ − m e f f y ′′ L ̇  x 2 

m e f f y ′ L 

Rearranging Equation (B.7): 
m L ( ̈x ) = F um 

+ F N sin θ − μk F N cos θ

ẍ = 

F um 

+ F N sin θ − μk F N cos θ
m L 

Setting these equal to each other, isolating F N 

: 

F sp − F N cos θ − μk F N sin θ − m e f f y ′′ L ̇  x 2 

m e f f y ′ L 
= 

F um 

+ F N sin θ − μk F N cos θ
m L 

m L (F sp − F N cos θ − μk F N sin θ − m e f f y ′′ L ̇  x 2 ) = m e f f y ′ L (F um 

+ F N sin θ − μk F N cos θ ) 

−F N m L cos θ − F N m L μk sin θ − F N m e f f y ′ L sin θ + F N m e f f y ′ L μk cos θ = 

m L m e f f y ′′ L ̇  x 2 − m L F sp 

+ m e f f y ′ L F um 

F N (m e f f y ′ L μk cos θ − m e f f y ′ L sin θ − m L μk sin θ − m L cos θ ) = 

m L m e f f y ′′ L ̇  x 2 − m L F sp 

+ m e f f y ′ L F um 

F N = 

m L m e f f y ′′ L ̇  x 2 − m L F sp + m e f f y ′ L F um 

m e f f y ′ L μk cos θ − m e f f y ′ L sin θ − m L μk sin θ − m L cos θ

It’s somewhat inconvenient to have θ in this expression, so we can make the following substitutions based on 

the geometry of our problem: 
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sin θ = 

y ′ L √ 

1 + (y L ′ ) 2 
cos θ = 

1 √ 

1 + (y L ′ ) 2 
Plugging these in: 

F N = 

m L m e f f y ′′ L ̇  x 2 − m L F sp + m e f f y ′ L F um 

m e f f y ′ L μk − m e f f (y ′ L ) 2 − m L μk y ′ L − m L 

√ 

1 + (y ′ L ) 2 

Great! Now that we have this, we’ll resume with our other goal, of solving for ẍ . 
S olv ing for ẍ - With two expressions for F N 

in Eqs. (B.6) and (B.7), we can set them equal to each other to solve 
for ẍ : 

F sp − m eff(y ′′ L · ˙ x 2 + y ′ L · ẍ ) 
cos θ + μk sin θ

= 

m L ̈x − F um 

sin θ − μk cos θ

Cross-multiply to get: 

( sin θ − μk cos θ )(F sp − m eff(y ′′ L · ˙ x 2 + y ′ L · ẍ ) = ( cos θ + μk sin θ )(m L ̈x − F um 

) 

Expanding: 

F sp sin θ − m eff sin θ (y ′′ L · ˙ x 2 + y ′ L · ẍ ) − F sp μk cos θ + m effμk cos θ (y ′′ L · ˙ x 2 + y ′ L · ẍ ) = 

m L ̈x cos θ − F um 

cos θ + m L μk ̈x sin θ − F um 

μk sin θ

Divide both sides by cos θ : 
F sp ���� 

tan θsin θ − m eff���� 

tan θsin θ (y ′′ L · ˙ x 2 + y ′ L · ẍ ) − F sp μk ���cos θ + m effμk ���cos θ (y ′′ L · ˙ x 2 + y ′ L · ẍ ) 

= m L ̈x ���cos θ − F um 

���cos θ + m L μk ̈x ���� 

tan θsin θ − F um 

μk ���� 

tan θsin θ

F sp tan θ − m eff tan θ (y ′′ L · ˙ x 2 + y ′ L · ẍ ) − F sp μk + m effμk (y ′′ L · ˙ x 2 + y ′ L · ẍ ) 
= m L ̈x − F um 

+ m L μk ̈x tan θ − F um 

μk tan θ

We can replace tan θ with y ′ L : 

F sp y ′ L − m effy ′ L (y 
′′ 
L · ˙ x 2 + y ′ L · ẍ ) − F sp μk + m effμk (y ′′ L · ˙ x 2 + y ′ L · ẍ ) 

= m L ̈x − F um 

+ m L μk ̈x y ′ L − F um 

μk y ′ L 

If we expand the equation, move all terms that contain ẍ and 

˙ x 2 to one side, and factor out ẍ and 

˙ x 2 , we get: 

ẍ (m effμk y ′ L − m eff(y ′ L ) 
2 − m L − m L μk y ′ L ) + 

˙ x 2 (m effμk y ′′ L − m effy ′ L y 
′′ 
L ) 

= −F um 

− F um 

μk y ′ L − F sp y ′ L + F sp μk 

Now, let us solve for ẍ and regroup some terms to arrive at the final result: 

ẍ = 

(F um 

+ F sp y ′ L ) + μk (F um 

y ′ L − F sp ) − ˙ x 2 (m effy ′ L y ′′ L − m effμk y ′′ L ) 
(m L + m eff(y ′ L ) 2 ) − μk (m effy ′ L − m L y ′ L ) 

And if there is no friction such that μk = 0: 

ẍ = 

(F um 

+ F sp y ′ L ) − ˙ x 2 (m effy ′ L y ′′ L ) 
m L + m eff(y ′ L ) 2 
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Appendix C: Model for Large Angular Displacements 
To model large amplitude rotational motion, we can no longer assume F spring = m proj · ÿ as we do for the case of 
linear (or small amplitude rotational) motion. Instead, there is a changing mechanical advantage as a function of 
the angle between the spring and the lever (pictured below) that complicates the dynamics of the system. 

However, if we derive expressions for effective spring force and projectile mass F eff and m eff as functions of 
the displacement of the spring, we can use these expressions in our linear model to accurately describe rotational 
motion. In the following section, we derive these expressions. 

We begin by writing Newton’s second law for rotational motion: 

F · sin (α) · L 1 = I ̈θ. (C.1) 
Our end goal is to write this as 

F eff = m eff · ÿ , 

where y is the displacement of the spring. 
First, we will write θ̈ in terms of ÿ . There is a complex exact relationship between y and θ that an interested 

reader can calculate using the law of cosines a few times, but it is very well approximated by y = L 1 · sin ( θ). Using 
this, we find 

y = L 1 · sin (θ ) 

˙ y = L 1 · cos (θ ) · ˙ θ

ÿ = −L 1 · sin (θ ) · ˙ θ2 + L 1 · cos (θ ) · θ̈ . 

Rearranging these equations, we find 

θ̈ = 

1 
L 1 cos (θ ) 

ÿ + 

sin (θ ) 
L 2 1 cos 3 (θ ) 

˙ y 2 (C.2) 

Now, if we substitute equation C.2 into equation C.1, we have 

F · sin (α) = 

I 
L 2 1 

(
1 

cos (θ ) 
ÿ + 

sin (θ ) 
L 1 cos 3 (θ ) 

˙ y 2 
)

(C.3) 

Next, we find 

I 
L 2 1 
. Using the parallel axis theorem, we find the moment of inertia of the lever (a rod with uniformly 

distributed mass m ) and projectile (a point mass M ) about the axis of rotation will be 

I = M(L 2 ) 2 + 

1 
12 

m (L 1 + L 2 ) 2 + m 

(
L 2 − L 1 

2 

)2 
. 
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16 Cook et al. 

Dividing by L 

2 
1 and substituting the EMA EMA = 

L 1 
L 2 
, we have found an intermediate mass quantity m int such that 

m int = 

I 
L 

2 
1 

= 

( 

M 

EMA 

2 + 

m 

12 

( (
1 + 

1 
EMA 

)2 
+ 3 

(
1 

EMA 

− 1 
)2 

) ) 

and we can rewrite equation C.3 as 

F · sin (α) = m int ·
(

1 
cos (θ ) 

ÿ + 

sin (θ ) 
L 1 cos 3 (θ ) 

˙ y 2 
)

or 
F sin (α) − m int 

sin (θ ) 
L 1 cos 3 (θ ) 

˙ y 2 = 

m int 

cos (θ ) 
· ÿ (C.4) 

Equation C.4 is in the desired form, so we can now extract 

F eff = F sin (α) − m int 
sin (θ ) 

L 1 cos 3 (θ ) 
˙ y 2 

and 

m eff = 

m int 

cos (θ ) 
. 
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