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Baryogenesis through neutrino oscillations is an elegant mechanism that has found several realizations in
the literature corresponding to different parts of the model parameter space. Its appeal stems from its
minimality and dependence only on physics below the weak scale. In this paper we show that by focusing
on the physical time scales of leptogenesis instead of the model parameters, a more comprehensive picture
emerges. The different regimes previously identified can be understood as different relative orderings of
these time scales. This approach also shows that all regimes require a coincidence of time scales and this in
turn translates to a certain tuning of the parameters, whether in mass terms or Yukawa couplings. Indeed,
we show that the amount of tuning involved in the minimal model is never less than one part in 105

according to a metric constructed from a combination of the sterile neutrino mass degeneracy and the
Barbieri-Giudice tuning of the Yukawa coupling. Finally, we explore an extended model, where the tuning
can be removed in exchange for the introduction of a new degree of freedom in the form of a leptophilic
Higgs with a vacuum expectation value of the order of GeV.
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I. INTRODUCTION

It is a theoretically attractive possibility to explain the
baryon asymmetry of the Universe through the mechanism
of sterile neutrino oscillations [1,2]. The model is simple,
containing only right-handed sterile neutrinos in addition to
the Standard Model (SM). These neutrinos are light (∼GeV)
and do not require any new physics at inaccessibly high
energy scales. The model even holds the possibility that one
of the sterile neutrinos can be the nonbaryonic dark matter
of the Universe [2–5]. Several past works have found
different choices of the parameters that lead to the correct
baryon asymmetry and identified several regimes [2,5–10].
It is the purpose of this paper to present a unified

perspective on leptogenesis through neutrino oscillations,
weaving the disjoint regimes previously identified in the
literature into a single continuous picture. Our analysis
focuses on the three important time scales for baryogenesis:
the time of sterile neutrino oscillations, active-sterile
neutrino equilibration time, and sphaleron decoupling time.
We identify the different regimes as different relative
orderings of these time scales and demonstrate the con-
tinuity of separate parts of the parameter space. This allows
us to point out the most important effects contributing to the
asymmetry in each regime. Along the way, we provide
some improvement upon the calculation of the baryon
asymmetry from neutrino oscillations by including the

effects of scatterings between left-handed (LH) leptons
and the thermal bath during asymmetry generation.
Aside from providing a unified framework, centering the

discussion around the relevant time scales for baryogenesis
brings to the forefront the need for an accidental coinci-
dence between the different, unrelated scales in the prob-
lem. It is therefore no surprise that the framework is marred
by the need for fine-tuning between its fundamental
parameters in order to successfully generate the correct
baryon asymmetry in the different regimes. We show that
while the fine-tuning present in different regimes appears in
different parameters, the total fine-tuning is always at least
at the level of 1=105 according to the metric defined in
Eq. (30), which accounts for both the sterile neutrino mass
degeneracy and the alignment of different active-sterile
Yukawa couplings.
While possibly aesthetically unappealing, the persistent

fine-tuning needed throughout the parameter space is not
grounds to discount the framework. It is, however, possibly
an invitation to explore extensions of the minimal model,
which would either alleviate some of the necessary tuning
or explain it as a small departure from a more symmetric
phase. In the final part of this work, we therefore consider
the possibility of an additional Higgs doublet with a small
electroweak vacuum expectation value (VEV), which is
coupled to all the leptons through larger-than-usual Yukawa
couplings. We show that aside from ameliorating the
fine-tuning needed for successful leptogenesis, such a
leptophilic Higgs doublet can be searched for directly
and indirectly in high-energy reactions accessible at
the LHC.
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The paper is organized as follows: in Sec. II, we review
the qualitative features of baryogenesis through neutrino
oscillations, providing a unified perspective on the physics
responsible for leptogenesis in different regimes. In Sec. III,
we discuss the different model parameters and their specific
roles in leptogenesis. Section IV presents the formalism for
computing the baryon asymmetry and describes the mod-
ifications we make to the asymmetry evolution equations to
account for SM thermal scatterings. In Sec. V, we confirm
our unified perspective on leptogenesis with numerical
studies of the different parameter regimes. We define a
tuning measure for the minimal model parameter space and
explicitly show the tuning required to obtain the observed
baryon asymmetry throughout the different parameter
regimes. We then discuss the baryon asymmetry in a
leptophilic two Higgs doublet model (2HDM) in
Sec. VI, demonstrating how the asymmetry can be
enhanced relative to the minimal model, eliminating any
need for tuning. We also discuss experimental implications
of this extended model. We close with a discussion and
some remarks about the inclusion of dark matter in
the model.

II. REVIEW OF BARYOGENESIS THROUGH
NEUTRINO OSCILLATIONS

It has been appreciated for some time that, in extensions
of the Standard Model with sterile neutrinos, oscillations of
the sterile neutrinos can be responsible for baryogenesis
[1,2]. We discuss the basic framework in this section,
emphasizing the essential features that emerge from the
model. We begin by presenting the model, and follow with
a qualitative account of the asymmetry generation and its
dependence on the underlying model parameter.

A. Neutrino minimal Standard Model (νMSM)

We consider the Type I seesaw model for generating LH
neutrino masses, also known as the neutrino minimal
Standard Model (νMSM). In this scenario, the SM is
supplemented by three sterile neutrinos, NI , with
Majorana masses, MI . In the basis where the charged
lepton and sterile neutrino masses are diagonal, the
Lagrangian is (see Ref. [11] for a recent review)

LνMSM ¼ FαILαΦNI þ ðMNÞININI; (1)

where Φ is the electroweak doublet scalar responsible for
giving mass to the SM neutrinos, and Lα is the SM lepton
doublet of flavor α. When the scalar doublet develops a
VEV, hΦi ≠ 0, these interactions generate a small mass for
the LH neutrinos through the seesaw mechanism [12] of the
order

mν ∼
F2hΦi2
MN

∼ 0.1 eV

� hΦi
100 GeV

�
2
�

F
10−7

�
2
�
GeV
MN

�
: (2)

Here, we used the parameters and masses most relevant for
the current work: a scalar VEV around the electroweak
scale, hΦi ∼ 100 GeV; sterile-neutrino masses around or
below the electroweak scale, MN ∼ GeV; and small
Yukawa couplings, F ∼ 10−7–10−8. With weak-scale sterile
neutrino masses, the Yukawa couplings of the neutrino are
only somewhat smaller than the electron Yukawa.
With such a small coupling between LH leptons and

sterile neutrinos, active-sterile neutrino scattering is out of
equilibrium in the early universe and does not become rapid
until T ≲ TW, where TW ≈ 140 GeV is the temperature of
the sphaleron decoupling at the electroweak phase tran-
sition [5]. If there is a negligible concentration of sterile
neutrinos immediately following inflation, then the sterile-
neutrino abundance remains below its equilibrium value
until it rethermalizes at T ≲ TW. As is well known,
sphaleron processes active for T > TW violate baryon
number (B), but preserve the difference between baryon
and lepton numbers (B − L), processing the primordial
lepton asymmetry into a baryon asymmetry [13]. Thus, the
final baryon asymmetry of the universe observed today is
determined by the lepton asymmetry at the time of
sphaleron decoupling, TW [14]. In everything that follows,
we therefore assume the physics associated with sphalerons
to be present and concentrate on a detailed understanding of
leptogenesis alone.

B. Sakharov conditions for leptogenesis

The Sakharov conditions [15] necessary for generating a
total lepton asymmetry are satisfied in the νMSM:
(1) Violation of Standard Model lepton number: The

Yukawa coupling in Eq. (2) preserves a generalized
lepton number L − N under which both SM and
sterile neutrinos are charged. The L − N symmetry
is broken by the sterile neutrino Majorana mass, but
rates of ðL − NÞ-violating processes are suppressed
by a factor ofM2

N=T
2 relative to ðL − NÞ-preserving

rates, and so total lepton number violation is gen-
erally ineffective for T ≳ TW. However, scattering
processes Lα → N†

I through the Yukawa interactions
in Eq. (2) violate Standard Model lepton number,
allowing the creation of equal asymmetries in L and
N such that L − N is still conserved. Sphalerons then
convert the SM L asymmetry into a baryon
asymmetry.

(2) CP violation: There are three CP phases in the
Yukawa couplings FαI . Together, these provide a
sufficient source for leptogenesis through neutrino
oscillations.
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(3) Departure from equilibrium: As discussed above, if
MN ≲ TW, sterile neutrino scatterings are out of
equilibrium provided there is no abundance of sterile
neutrinos at the earliest times following inflation.
Unlike many models of baryogenesis, the out-of-
equilibrium condition is satisfied for an extended
period in the early universe, with equilibration only
occurring after sphaleron decoupling, T ≲ TW.

In the following subsection, we elaborate on the physical
processes responsible for the production (and destruction)
of the lepton asymmetry, and clarify which parameters most
strongly control the size of the baryon asymmetry.

C. Asymmetry creation and washout

The basic stages leading to the creation of a total SM
lepton asymmetry are shown in Fig. 1. Immediately
following inflation, there is no abundance of sterile
neutrinos, and out-of-equilibrium scatterings mediated by
the Yukawa couplings begin to populate the sterile sector,
as shown on the left side of Fig. 1. The sterile neutrinos are
produced in a coherent superposition of mass eigenstates1

and remain coherent as long as the active-sterile Yukawa
coupling remains out of equilibrium, since in the minimal
model there are no other interactions involving the sterile
neutrinos.
Some time later, a subset of the sterile neutrinos scatter

back into LH leptons, mediating Lα → Lβ transitions as
shown in the center of Fig. 1. Since the sterile neutrinos
remain in a coherent superposition in the intermediate time
between scatterings, the transition rate Lα → Lβ includes
an interference between propagation mediated by the
different sterile neutrino mass eigenstates. The different

mass eigenstates have different phases resulting from time
evolution; for sterile neutrinosNI andNJ, the relative phase
accumulated during a small time dt is e−iðωI−ωJÞdt, where

ωI − ωJ ≈
ðMNÞ2I − ðMNÞ2J

2T
≡ ðMNÞ2IJ

2T
: (3)

In the interaction basis, this CP-even phase results from an
oscillation between different sterile neutrino flavors, and
explains the moniker of leptogenesis through neutrino
oscillations.
When combined with the CP-odd phases from the

Yukawa matrix, neutrino oscillations lead to a difference
between the Lα → Lβ rate and its complex conjugate,

ΓðLα → LβÞ − ΓðL†
α → L†

βÞ

∝
X
I≠J

Im

�
exp

�
−i

Z
t

0

M2
IJ

2Tðt0Þ dt
0
��

Im½FαIF�
βIF

�
αJFβJ�:

(4)

In the absence of efficient washout interactions, which is
ensured by the out-of-equilibrium condition, this difference
in rates creates asymmetries in the individual LH lepton
flavors Lα.
Denoting the individual LH flavor abundances (normal-

ized by the entropy density, s) by YLα
≡ nLα

=s and the
asymmetries by YΔLα

≡ YLα
− YL†

α
, we note that the proc-

esses at order OðjFj4Þ discussed thus far only convert Lα

into Lβ, conserving total SM lepton number,

YΔLtot
¼

X
α

YΔLα
¼ 0 at OðjFj4Þ: (5)

Since sphalerons couple to the total SM lepton number, it
follows that no baryon asymmetry is generated at this order

FIG. 1. The basic stages leading to the creation of a total lepton asymmetry from left to right: out-of-equilibrium scattering of LH leptons
begin to populate the sterile neutrino abundance at order OðjFj2Þ; after some time of coherent oscillation, a small fraction of the sterile
neutrinos scatter back into LH leptons to create an asymmetry in individual lepton flavors at orderOðjFj4Þ; finally, at orderOðjFj6Þ, a total
lepton asymmetry is generated due to a difference in scattering rate into sterile neutrinos among the different active flavors.

1This is true assuming generic parameters with no special
alignment of the sterile-neutrino interaction and mass eigenstates.
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as well, YΔBtot
¼ 0. Total lepton asymmetry is, however,

generated at order OðjFj6Þ: the excess in each individual
LH lepton flavor due to the asymmetry from Eq. (4) leads to
a slight increase of the rate of Lα → N† vs L†

α → N. The
result is that active-sterile lepton scatterings can convert
individual lepton flavor asymmetries into asymmetries in
the sterile neutrinos. But, since the rates of conversion,
ΓðLα → N†Þ, are generically different for each lepton
flavor α, this leads to a depletion of some of the individual
lepton asymmetries at a faster rate than others, leading to an
overall SM lepton asymmetry and an overall sterile
neutrino asymmetry. Because Ltot − N is conserved for
T ≫ mN , this gives

dYΔNtot

dt
¼ dYΔLtot

dt
¼

X
α;I

YΔLα
ΓðLα → N†

I Þ: (6)

Therefore, while the sum of the LH lepton flavor asym-
metries vanishes at OðjFj4Þ as in Eq. (5), the fact that
the LH leptons scatter at different rates into the sterile
sector results in a nonvanishing total lepton asymmetry
at OðjFj6Þ.
The asymmetry generated at early times can be

destroyed later when the different lepton flavors establish
chemical equilibrium with the sterile neutrinos. This occurs
when the transition rate exceeds the Hubble rate,
ΓðLα → N†Þ ∼ ðFF†ÞααT ≳H. At this time, the particular
lepton flavor Lα reach chemical equilibrium with the sterile
neutrinos, but not yet with the other SM leptons since
lepton flavor is still conserved to a good approximation.
Suppose, for concreteness, that Lτ comes into equilibrium
with the sterile neutrinos, but Lμ and Le remain out of
equilibrium. Then, before Lτ comes into equilibrium, we
can use the approximate conservation of ΔLtot − ΔN ¼ 0
to write

YΔLe
≡ x; YΔLμ

≡ y; YΔLτ
≡ z;

YΔN ¼ YΔLtot
¼ xþ yþ z: (7)

Once Lτ comes into equilibrium with the sterile neutrinos,
the Yukawa coupling FτILτHNI leads to the equilibrium
chemical potential relation2 μLτ

¼ −μN . Because the fields
Lτ and N both have two components and opposite-sign
chemical potentials, their asymmetries are therefore equal
and opposite: YΔLτ

¼ −YΔN . The flavor asymmetries ΔLμ

and ΔLe remain unchanged because they are not yet in
equilibrium. Together with the fact that the ΔLtot − ΔN ≈ 0
at high temperature, this implies that after Lτ equilibration,

YΔN ¼ YΔLtot
¼ xþ y

2
: (8)

Therefore, at the point of equilibration of the τ flavor, the
total lepton asymmetry rapidly changes from xþ yþ z to
ðxþ yÞ=2, and the ΔLτ asymmetry rapidly changes from z
to −ðxþ yÞ=2. We see that nothing remains of the original
ΔLτ flavor asymmetry z by the time the tau flavor comes
fully into equilibrium. Both the total lepton asymmetry and
Lτ flavor asymmetry change dramatically when equilib-
rium is reached, with the asymmetry after equilibrium
being fixed by the remaining asymmetries in the flavors Le
and Lμ. It is also apparent that if all of the flavors come
into equilibrium, ΔLe ¼ ΔLμ ¼ ΔLτ ¼ ΔN ¼ 0. Clearly,
sphaleron interactions must decouple before this time is
reached or no baryon asymmetry results from sterile
neutrino oscillation.

D. Qualitative dependence of asymmetry
on model parameters

In the discussion above we have highlighted three
important elements for generating a nonzero baryon asym-
metry: the coherent oscillation and interference of different
sterile neutrino states in Lα → Lβ scattering; the magni-
tudes of the Yukawa couplings which determine the rates of
processes generating the lepton asymmetry; and the pres-
ence of differences in scattering rates of individual LH
lepton flavors into sterile neutrinos. We now elaborate on
each, as they have implications for what parts of parameter
space maximize the baryon asymmetry in the minimal
model, and how new interactions can enhance the
asymmetry.

1. Sterile neutrino mass splitting

In the absence of a sterile-neutrino mass splitting, the
sterile-neutrino masses and couplings can be simultane-
ously diagonalized, and there is no coherent oscillation or
interference as required in Fig. 1. The size of the mass
splitting dictates the time scale at which the phases of the
coherently evolving sterile neutrino eigenstates become
substantially different. From Eq. (4) and the Hubble scale in
a radiation-dominated universe [16],

H ¼ 1.66
ffiffiffiffiffi
g�

p
T2

MPl
(9)

(g� is the number of relativistic degrees of freedom), we
have an Oð1Þ phase from oscillation at

tosc ≈
�

3
ffiffiffiffiffiffiffiffi
MPl

p

1.66g1=4�
ffiffiffi
2

p ðM2
N3 −M2

N2Þ

�
2=3

: (10)

The oscillation time is later for smaller mass splittings. At
later times, the rates of scattering between active-sterile
neutrinos is larger relative to the Hubble scale, and the

2Strictly speaking, the relation is μLτ
þ μΦ ¼ −μN ; for illus-

trative purposes, and because μΦ is typically small compared to
the LH SM lepton flavor asymmetries, we set μΦ ¼ 0 here.
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asymmetry is consequently larger. Therefore, small but
nonzero sterile neutrino mass splittings enhance the size of
the baryon asymmetry [1,2], as long as active-sterile
neutrino scattering is not so rapid as to decohere the sterile
neutrinos prior to coherent oscillation. At even later times,
t ≫ tosc, the oscillation rate is rapid compared to the
Hubble scale, and sterile neutrinos produced at different
times have different phases, averaging over the entire
ensemble results in a cancellation of the asymmetry
production from each sterile neutrino. Therefore, the lepton
flavor asymmetries are dominated by production at t ∼ tosc.

2. Magnitude of Yukawa couplings

The rate of production of individual lepton flavor
asymmetries in (4) is OðjFj4Þ; therefore, increasing the
magnitude of the Yukawa couplings gives a substantial
enhancement to the individual flavor asymmetries. Also,
larger Yukawa couplings give a more rapid transfer rate
from the individual lepton flavor asymmetries into a total
lepton asymmetry at order OðjFj6Þ, further enhancing the
baryon asymmetry. However, increase in the Yukawas also
enhances the washout processes. The characteristic time
scale associated with the washout of lepton flavor α is

tαwashout ∼
1

ΓðLα → N†Þ ∼
1

ðFF†ÞααT
: (11)

If the Yukawa coupling is too large, then washout occurs
before the electroweak phase transition, and all lepton
flavor asymmetries are driven to zero in the equilibrium
limit. The final asymmetry is maximal when the Yukawa
couplings are large enough to equilibrate all lepton species
immediately after the electroweak phase transition, but not
larger. Since sphalerons decouple at TW, the baryon
asymmetry is frozen in even though the lepton asymmetry
is rapidly damped away shortly after the phase transition.
This is true, provided that the Yukawa couplings are not so
large that the sterile neutrinos decohere before the time of
asymmetry generation, which can occur if the oscillation
time is very late (ΔMN=MN ≪ 1).

3. Lepton flavor dependence in scattering rates

As discussed in Sec. II C, the generation of individual
flavor asymmetries at order OðjFj4Þ due to sterile neutrino
oscillations is insufficient. A total SM lepton asymmetry is
generated only at OðjFj6Þ due to flavor-dependent scatter-
ing rates according to Eq. (6). In the absence of lepton
flavor-dependent effects, the individual scattering rates are
all equal, ΓðLe → N†Þ ¼ ΓðLμ → N†Þ ¼ ΓðLτ → N†Þ, and
the total lepton asymmetry remains zero even at higher
orders in F. Therefore, differences in lepton flavor rates are
crucial to generate a baryon asymmetry. Fortunately, there
is already evidence for lepton flavor dependence in
interactions with neutrinos. First, the structure of the LH
neutrino masses and mixing angles tells us that their

Yukawa couplings are nonuniversal, and proportional to
the mixing angles θij. Second, theCP phases appear in very
particular terms in the interaction: for instance, the Dirac
phase δ appears only in terms proportional to sin θ13.
Changing the phase can lead to constructive or destructive
interference of rates involving a specific lepton flavor. The
total lepton asymmetry is maximized in regions of param-
eter space that accentuate the differences between lepton
flavor interaction rates. The importance of flavor effects
was recently emphasized in [10].
Considering all of these effects, we identify regimes of

parameter space depending on the relative time scales of
oscillation, sterile neutrino equilibration, and sphaleron
decoupling. Because these are the only time scales in the
problem, this results in three regimes that completely
characterize the minimal model. Regime I is defined by
tosc ≲ tW ≪ teq and was considered in the original works on
baryogenesis from neutrino oscillations [1,2]. Equilibration
occurs long after the electroweak phase transition and so
washout effects are entirely irrelevant. However, the total
baryon asymmetry is also generally too small because the
small Yukawa couplings implied by the late washout also
suppress the rates in Eq. (6). To account for the observed
baryon asymmetry, the oscillation time scale must be
made as large as possible and thus close to the electroweak
scale, tosc ≲ tW. This coincidence of scales is achieved
through a fine-tuning of the sterile-neutrino mass splitting
ΔMN ≡MN3

−MN2
≲ ð10−6–10−8ÞMN . In regime II, the

sterile neutrinos come into equilibrium around the weak
scale, and the sphaleron processes freeze out “just in time”
to avoid washing out the entire asymmetry tosc ≪ teq ∼ tW.
This alleviates some of the tuning necessary in the mass
splitting ΔMN , but the coincidence between the equilibra-
tion scale and the electroweak scale requires some tuning in
the Yukawa couplings, as we show in Sec. III. Finally, in
regime III, first identified in [10] and considered in the
context of a UV model in [17], the Yukawa couplings are
made even larger. This generically results in the equilibra-
tion time, teq, being even earlier than the weak scale. This
would have been a phenomenological disaster with the
entire asymmetry being washed-out too early, except that
destructive interference in the scattering rate for one of the
lepton flavors makes it much smaller than the others. The
result is a time scale ordering tosc ≪ teq;α ≪ teq;β ≈ tW. In
this regime, even less tuning is necessary in the mass
splitting, but the unnaturally early equilibration time for
two of the flavors requires a substantial tuning in the
Yukawa couplings. We quantify this combined tuning
below in Sec. V D.
In Fig. 2, we show the time evolution of the individual

lepton flavor asymmetries and total lepton asymmetry for
each of the regimes discussed above. In regime II, the
downward spikes in the total lepton asymmetry and the Lμ

asymmetry are the result of a change in sign of the asymmetry,
as shown in Eqs. (7)–(8) and the related discussion. The spike
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indicates the time of the equilibration of Lμ around
T ¼ 200 GeV ∼ TW. In regime III, these spikes occur due
to Lμ and Lτ equilibration around T ≳ 3 TeV. Indeed, the
hallmark of regime III is that the equilibration temperatures of
Lμ andLτ aremore than an order ofmagnitude larger than that
ofLe at T ≲ 100 GeV, whereas in regime II, all flavors come
into equilibrium near the same scale.

III. MODEL PARAMETERIZATION

The model we consider is the νMSM [2], with the
Lagrangian given in Eq. (1). At low temperatures T ≪ MI ,
the SM neutrinos acquire a mass in the effective theory,

ðmνÞαβ ¼ hΦi2ðFM−1
N FTÞαβ: (12)

This is the usual seesaw suppression of the SM neutrino
masses, and its parametric scaling was discussed in relation
with Eq. (2). The observed masses and mixings of the SM
neutrinos are [18]

(i) jΔm2
atmj ¼ 2.35þ0.12

−0.09 × 10−3 eV2, m2
sol ¼ 7.58þ0.22

−0.26 ×
10−5 eV2, and

P
imνi ≲ eV.

(ii) sin2θ12 ¼ 0.312þ0.018
−0.015 , sin2θ23 ¼ 0.42þ0.08

−0.03 , and
sin22θ13 ¼ 0.096� 0.013.

The data are consistent with one of the LH neutrinos being
massless, and one of the sterile neutrinos being largely
decoupled from the SM. This decoupled sterile neutrino,
which we take for concreteness to be N1, is a possible dark
matter candidate, but does not play a role in leptogenesis.
Therefore, we consider an effective theory with only N2

and N3 as the two sterile neutrinos.

The assumption of one massless LH neutrino fixes
the other LH neutrino masses, up to a discrete choice
of mass hierarchy. We consider the normal hierarchy,
where mν1 ¼ 0, mν2 ¼

ffiffiffiffiffiffiffiffi
m2

sol

p
≈ 9 meV, and mν3 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jΔm2
atmj

p
≈ 49 meV. It is also possible for the setup to

be realized in the inverted hierarchy (m3 ¼ 0, m2 ∼m1),
but the qualitative dependence of the baryon asymmetry on
model parameters is similar to the normal hierarchy, while
the value of the baryon asymmetry can be somewhat larger
with an inverted hierarchy [8]. We focus exclusively on the
normal hierarchy as a benchmark, since our results also
qualitatively hold in the inverted hierarchy and easily
generalize to that scenario.
The magnitudes of the Yukawa couplings Fα2, Fα3 are

crucial for successful baryogenesis. To better understand
the connection between the Yukawa couplings and physical
parameters, we decompose the Yukawa couplings with the
Casas-Ibarra parametrization [19],

F ¼ i
hΦiUν

ffiffiffiffiffiffi
mν

p
R� ffiffiffiffiffiffiffiffi

MN

p
: (13)

Here Uν is the MNS matrix containing mixing angles and
CP phases from the LH neutrino mixing [20], mν is a
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FIG. 2 (color online). Time evolution of the individual lepton
flavor asymmetries and the total lepton asymmetry in different
parameter regimes. The dashed vertical line indicates the
electroweak phase transition. (Top) Regime I: The Yukawa
couplings are small enough that washout effects are always
irrelevant, (Center) Regime II: The Yukawa couplings are large
enough that equilibration of the sterile neutrinos occurs at the
electroweak phase transition, (Bottom) Regime III: Large
lepton flavor dependence in the L → N† rates, such that
ΓðLe → N†Þ ≪ ΓðLμ → N†Þ, ΓðLτ → N†Þ. The Yukawa cou-
plings are even larger than in regime II, such that Lτ and Lμ

equilibrate completely with the sterile neutrinos at T ≫ TW,
and Le comes into equilibrium at T ∼ TW.

BRIAN SHUVE AND ITAY YAVIN PHYSICAL REVIEW D 89, 075014 (2014)

075014-6



diagonal matrix of LH neutrino masses, and MN is a
diagonal matrix of sterile neutrino masses. The matrix R is
an orthogonal matrix specifying the mixing between sterile
neutrino mass and interaction eigenstates; in the case of a
normal neutrino hierarchy with two sterile neutrinos, R has
the form

RαI ¼
0
@

0 0

cosω − sinω

sinω cosω

1
A; (14)

where ω is a complex angle parametrizing the misalign-
ment between sterile neutrino mass and interaction eigen-
states. We refer the reader to Appendix A for the explicit
form of the decomposition in Eq. (13). We note that when
ω ¼ 0, the Yukawa interactions can be diagonalized in the
sterile neutrino mass basis, and the interference/oscillation
necessary for leptogenesis is absent.
The parameters that emerge out of the decomposition of

the Yukawa couplings can be grouped as follows:
(1) Parameters currently fixed by experiment:

(a) Three LH neutrino masses, ðmνÞi;
(b) Three LH neutrino mixing angles from the MNS

matrix: θ12, θ13, θ23.
(2) Parameters constrained by experiment:

(a) The VEV hΦi. If Φ is the SM Higgs, it has the
value hΦi ¼ 174 GeV; otherwise, it is undeter-
mined but constrained by bounds on new
sources of electroweak symmetry breaking
(see Sec. VI C).

(3) Unconstrained parameters:
(a) Two phases from LH neutrino mixing: a Major-

ana phase, η, and a Dirac phase, δ;
(b) Two sterile neutrino masses, ðMNÞI;
(c) A complex mixing angle, ω.

These parameters, in turn, influence the dynamics of
baryogenesis in three key ways: by setting the magnitude
of the Yukawa couplings, controlling lepton flavor depend-
ence in scattering rates, and providing the CP violation
necessary for baryogenesis. We consider each in turn.

A. Magnitude of Yukawa couplings

The scaling of the Yukawa magnitude is generally fixed
by the seesaw relation mν ∼ FFThΦi2=mN . In particular,
increasing either the sterile or LH neutrino masses enhances
the Yukawa couplings, as does decreasing hΦi. The presence
of the complex parameter ω, however, allows for an
enhancement of the Yukawas well beyond the naïve seesaw
value. The reason is that, while FFT is fixed by the LH
neutrino masses, physical rates depend on the quantities FF†

and F†F. It is therefore possible that squaring the complex
terms in ω leads to large cancellations among the terms in F
such that FFT ≪ FF†. The Yukawa couplings are actually
enhanced exponentially by the imaginary part of ω as

jFj2 ∝ mνMN

hΦi2 coshð2ImωÞ (15)

when jImωj is large. The parameter Imω does not otherwise
have any impact on experimentally observed quantities,
and it can be thought of as a dial to enhance the rates of
sterile neutrino production and scattering.
When jImωj ≫ 1, the seesaw relation only holds due to a

precise cancellation of parameters, and there is a very
specific alignment of the Yukawa couplings associated
with this enhancement. While the Yukawa matrix is stable
under radiative corrections, and therefore technically natu-
ral in the sense of ’t Hooft [21], the physically observed
parameters (such as the LH neutrino masses) change
significantly under small perturbations of the Yukawa
matrix entries. This results in tuning in the sense of
Barbieri and Giudice [22], which is quantified by observing
how the physical masses mν change under perturbations of
the Yukawa coupling, F. For concreteness, consider a
Yukawa matrix decomposed according to Eq. (13), which
is then perturbed according to F22 → ð1þ ϵÞF22 but
otherwise left unchanged. In the simplest case with
θαI ¼ Reω ¼ 0, the LH neutrino masses have a simple
analytic form and the eigenvalue m2 changes according to

d logm2

dϵ
¼ 1þ coshð2ImωÞ: (16)

With nonzero θ and Reω, the change in LH neutrino masses
from ϵ is apportioned among the different mass eigenstates,
but the overall shift is of the order of Eq. (16). We have also
verified this numerically. Therefore, while it is possible to
exponentially enhance the rates relevant for baryogenesis in
the minimal sterile neutrino model, it necessarily implies an
exponential tuning of the Yukawa couplings to obtain the
observed LH neutrino masses. Since much of the viable
parameter space in the baryogenesis studies of [5,8,10]
requires jImωj ≫ 1, baryogenesis in these setups is unnatu-
ral in the sense of Ref. [22].

B. Lepton flavor-dependent scattering rates

As discussed in Sec. II, lepton flavors must have
different scattering rates into sterile neutrinos in order to
convert the individual lepton flavor asymmetries into a total
lepton asymmetry. There are several parameters in F that
contribute differently to the asymmetry generation and
scattering rates for each flavor. The LH neutrino mass
hierarchy (m1 ≪ m2 ≪ m3) and hierarchy among mixing
angles (θ13 ≪ θ12 ∼ θ23) provides some differentiation
among lepton flavors; this typically suppresses rates of
electron scattering vs the corresponding rates for muons
and taus.
The CP phases δ and η also play an important role

in distinguishing lepton flavors. Since they appear in
different entries of the MNS matrix, these phases can
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lead to constructive or destructive interference among
processes involving specific lepton flavors. For instance,
when δþ η ¼ −π=2, there is destructive interference
between the Le → N†

2 and Le → N†
3 amplitudes, resulting

in ΓðLe → N†Þ ≪ ΓðLμ → N†Þ ∼ ΓðLτ → N†Þ [10,23].
Such interference effects can substantially alter the rates
of asymmetry creation or washout, modifying the total
baryon asymmetry. We emphasize that this effect is
independent of the role of the phases in CP violation. In
fact, over many regions of parameter space, this is the
dominant contribution of the Majorana and Dirac CP
phases to the baryon asymmetry.

C. CP violation

There are three sources of CP violation in the theory: the
Majorana phase η, the Dirac phase δ, and the complex
sterile neutrino mixing angle ω. Its imaginary part, Imω,
gives rise to two phases that are related to one another:

tanϕ1 ≡ tanðarg cosωÞ ¼ − tanðReωÞ tanhðImωÞ; (17)

tanϕ2 ≡ tanðarg sinωÞ ¼ cotðReωÞ tanhðImωÞ: (18)

According to the Sakharov conditions, a source of CP
violation is required to generate a baryon asymmetry.
Except where δ, η, and Imω all vanish, there is generically
an Oð1Þ phase contributing to baryogenesis coming from a
combination of these individual phases. Indeed, even in the
regions where the phases are aligned to give constructive or
destructive interference in scattering rates (as discussed
above), the combination of the LH neutrino phases δþ η is
generally nonzero. For instance, with Imω ≫ 1, construc-
tive (destructive) interference in ΓðLe → N†Þ occurs when
δþ η is π=2 (−π=2), which is also the phase alignment that
gives maximal CP violation in the LH lepton sector.
Therefore, CP violation is generally Oð1Þ over the entire
parameter space of the minimal model. The vanishing of
one phase (such as the experimentally accessible Dirac
phase δ) does not necessarily constrain the other phases
relevant for leptogenesis [6] or determine the relative lepton
flavor scattering rates.
Finally, we note that there have been some statements

in the literature implying that the limit of large jImωj
somehow leads to more CP violation. As shown in
Eqs. (17)–(18), the CP violating phases ϕ1 and ϕ2 depend
on tanhðImωÞ and quickly saturate with increased Imω.
Instead, as discussed above, the main effect of jImωj ≫ 1 is
an exponential enhancement of the Yukawa couplings, not
the presence of an additional source of CP violation.

IV. ASYMMETRY EVOLUTION EQUATIONS

In this section, we review the formalism for computing
the baryon asymmetry from sterile neutrino oscillations.
Along the way we discuss corrections we made to the

existing formalism to account for the contribution of
equilibrium processes to the evolution of the lepton
asymmetries. Because of the central role of coherent
oscillations among the sterile neutrino, the density matrix
formalism is well suited for tracking the evolution of
abundances and coherences between states. Such an
approach was used in [1], with [2] being the first analysis
to include all of the relevant terms in the evolution
equations, with various factors corrected in subsequent
work [7,9]. More sophisticated approaches have also been
taken, such as separately evolving different momentum
modes in the density matrix [9] or using nonequilibrium
quantum field theory [10]. These results are very similar to
those using thermally averaged density matrix evolution;
for example, Ref. [9] find enhancements of the total baryon
asymmetry of factors of 10%–40% when computing the
asymmetries separately in each momentum mode relative
to thermal averaging. Because of the computational sim-
plicity of thermal averaging, and the small changes to the
total asymmetry when using more sophisticated methods,
we employ thermal averaging in the current work.
As in earlier works, we follow the evolution of the sterile

neutrino and antineutrino density matrices, ρN , and ρN̄ , as
well as the LH lepton asymmetry density matrix, ρL−L̄.
Here, L refers to a single component of the SU(2) lepton
doublet, and is a matrix in lepton flavor space. The diagonal
elements of the density matrices are equal to the abundan-
ces of the corresponding fields normalized by the equilib-
rium abundance,

ρiiðtÞ ¼
YiðtÞ
Yeq
i ðtÞ

; (19)

and the off-diagonal terms correspond to the coherences
between the fields.
The evolution equations have the general form [2],

dρN
dt

¼ −i½HðtÞ; ρN � −
1

2
fΓðL† → NÞ2×2; ρN − ρeqL̄ I2×2g

−
1

2
γavTF†ρL−L̄F; (20)

dρN̄
dt

¼ −i½HðtÞ; ρN̄ � −
1

2
fΓðL → N†Þ2×2; ρN̄ − ρeqL I2×2g

þ 1

2
γavTFTρL−L̄F

�; (21)

dρL−L̄
dt

¼ −
1

4
fΓðL → N†Þ3×3; ρL−L̄g

þ 1

2
γavTðFρN̄F† − F�ρNFTÞ: (22)

Here (f; g) ½; � denotes a matrix (anti) commutator.
The evolution equations satisfy the relation
TrðρN−N̄ − 2ρL−L̄Þ ¼ 0, which reflects the conservation
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of the global L − N charge. The interested reader can find
a detailed account of these equations in Appendix B.
Here we instead concentrate on a qualitative understanding
of the significance of the different terms that appear in
Eqs. (20)–(22).
(1) The Hamiltonian terms induce coherent oscillations

between diagonal and off-digonal components of the
density matrix. Such a term is not included for
the LH leptons because these rapidly decohere in the
thermal bath of the early universe, and therefore only
on-diagonal density matrix components are nonzero.

(2) The terms proportional to ΓðL → N†Þ lead to both
production of the sterile neutrino abundance
(through the terms ∝ ρeqL ) and destruction (or wash-
out) of the asymmetries in both N and L. These
interactions drive the fields towards their equilib-
rium distributions and erase any asymmetries. These
scattering rates are proportional to the temperature T
and can often be factorized into the form

ΓðL → N†Þ ¼ γavðTÞTjFj2: (23)

The factor γavðTÞparametrizes the rate after factoringout
the Yukawa couplings and has been computed com-
pletely at leading order [24]. Representative diagrams
contributing to the process are shown in Fig. 3. The rates
fromRef. [24]sumoverbothleptondoubletcomponents.

(3) The final terms in each line produce the asymmetries
in each sector. For ρL−L̄, the coherent oscillations of
the sterile neutrinos (encoded in the off-diagonal
terms of ρN) create an asymmetry in individual LH

lepton flavors at OðjFj4Þ. For the sterile neutrinos,
an excess of Lα over L̄α translates into an excess of
scattering into N† vs N, sourcing an asymmetry in
the sterile sector as well at OðjFj6Þ. The rate of
transfer of SM lepton flavor asymmetries into sterile
neutrino asymmetries depends on the asymmetry in
the flavor Lα and the rate Lα → N†

I ; the matrix ρN
appears between the F† and F matrices because of
this sensitivity to lepton flavor effects.

The initial conditions are such that there are initially no
sterile neutrinos ρNð0Þ ¼ ρN̄ð0Þ ¼ 0 and no primordial
lepton asymmetry ρL−L̄ð0Þ ¼ 0. In existing works in the
literature, these initial conditions are used to evolve
Eqs. (20)–(22) down to the weak scale to determine the
asymmetry ρL−L̄ðtWÞ. At the weak scale, chemical potential
relations relate the size of the baryon asymmetry to the total
LH lepton asymmetry [25]:

YΔBðtWÞ ¼ −
28

79

X
α

YΔLα
ðtWÞ: (24)

Since sphalerons decouple at the electroweak phase tran-
sition, the final baryon asymmetry is frozen at this time and
is simply YΔBðtWÞ as given in Eq. (24).
The above approach to solving for the late-time baryon

asymmetry neglects the effects of rapid interactions
between SM fields during the epoch of leptogenesis. As
a result of these equilibrium interactions, the asymmetries
in individual lepton flavors created by sterile neutrino
oscillations are rapidly distributed among all SM fields
[11,25,26]. Since the asymmetries are destroyed only
through interactions of the LH leptons with sterile neu-
trinos, this modifies the relative rates of asymmetry creation
and destruction by anOð1Þ factor from the simplified result
in Eq. (24).
The effects of equilibrium scatterings on the evolution of

an asymmetry have been understood and corrected in a
different context, namely of baryogenesis through weak-
scale dark matter scatterings [27]. Our approach here is
similar: we include in our density matrices only quantities
that are preserved by the equilibrium SM interactions,
justifying the absence of such rapid interactions in the
evolution equations. Specifically, we exchange the anoma-
lous asymmetries in individual lepton flavors Lα in (22) for
asymmetries of B − 3Lα, which are exactly conserved by
SM scatterings. This modifies the density matrix equations.
Because Eq. (22) now represents the evolution of
ΔðB − 3LαÞ, instead of ΔLα, all terms are a factor of −2 ×
3 larger than for the individual LH lepton species, due to the
redefinition of the charge and an SU(2) factor from
summing over charged and neutral components of Lα.
The last term in Eq. (22), which creates the individual ΔLα

asymmetries, is otherwise unmodified, since the coherent
scattering N† → Lα generating the asymmetry is not
sensitive to the details of SM thermal scatterings. By
contrast, the first term in Eq. (22), which destroys the

FIG. 3. Representative Feynman diagrams for sterile neutrino
creation through (Top) 1 → 2 processes, (Center) gauge boson
2 → 2 scattering, (Bottom) quark 2 → 2 scattering.
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individual lepton flavor asymmetries, is proportional only
to the individual asymmetry ΔLα, not the total ΔðB − 3LαÞ
asymmetry.3 This is because the asymmetry in fields
carrying B − 3Lα is divided by the equilibrium scatterings
among many SM fields, such as the quarks and RH charged
leptons, which have no direct coupling to sterile neutrinos.
To write the correct evolution equation, we relate the LH
lepton abundances from Eq. (22) to the B − 3Lα charges
through the chemical potential constraints of the SM
interactions,

ðρL−L̄Þα ¼ −
1

2133

X
β

ð237δαβ − 16ÞρB−3Lα
; (25)

where δαβ is the Kronecker delta for LH lepton flavor. We
see immediately that the rates are suppressed by at least
≈6 × 221=2133 ≈ 0.6 due to the fact that much of the
asymmetry leaks out of the LH leptons, and possibly more
due to the other negative terms in the rotation matrix.
Having made this substitution, we express the density
matrix evolution equations purely in terms of ρN , ρN̄ , and
ρB−3Lα

. These quantities are then evolved down to the weak
scale, and instead of Eq. (24) the final baryon asymmetry is

YΔBðtWÞ ¼
28

237

X
α

YΔðB−3LαÞðtWÞ: (26)

The equations are actually easiest to solve in a different
basis: we provide the complete evolution equations in this
basis and a few details on numerical integration in
Appendix B. In that same appendix, we also include the
effects arising from a phase-space suppression of certain
diagrams contributing to the ΔLα destruction rates; such
modifications were first discussed in [9].

V. BARYON ASYMMETRY IN THE νMSM

This section is devoted to a quantitative confirmation of
the qualitative features discussed above. We demonstrate
the continuous transition between the different parameter
regimes discussed in Sec. II and depicted in Fig. 2. We also
show that, over the entire parameter space of the minimal
model, the observed baryon asymmetry requires a very
specific alignment of the model parameters to within at
leastOð10−5Þ. We do not perform a comprehensive scan of
possible parameters in the νMSM, as such a scan was
carried out in [5,8] for regimes I and II with kinetic
equations similar to those we use here, and our results
are in qualitative agreement with theirs. However, our
qualitative picture provides a simple understanding for the
parameters maximizing the baryon asymmetry found in
Ref. [5,8]. Finally, with regime III we explore a new region

of parameter space whose existence was first demonstrated
in Ref. [10] with a couple of representative points in a
model with three sterile neutrinos (instead of the two we
consider here). We expand upon Ref. [10] with a compre-
hensive scan of the parameter space and demonstrate the
emergence of regime III as a continuous part of the other
regimes.
The observed baryon asymmetry of the Universe is [28]

YΔB ≈ 8.6 × 10−11: (27)

Throughout this section, we take TW ¼ 140 GeV as the
temperature of the electroweak phase transition, corre-
sponding to a SM Higgs mass of 126 GeV [5]. For the
numerical solutions of the evolution equations in all
regimes, we take values consistent with Sec. III: m1 ¼ 0,
m2¼9meV, m3¼49meV, sin θ12 ¼ 0.55, sin θ23 ¼ 0.63,
and sin θ13 ¼ 0.16. For concreteness, we use Reω ¼ π=4
throughout our analyses, as this gives an appreciable
asymmetry for all values of Imω. The asymmetry does
not change substantially with this angle: for example,
Reω ¼ π=2 gives a comparable baryon asymmetry, with
somewhat larger values than Reω ¼ π=4 for Imω ≈ 0.5–3,
and smaller values elsewhere (see Fig. 7).

A. Regime I

The generation of a baryon asymmetry in this regime is
maximized when the rates of LH lepton scattering into
sterile neutrinos are very different for different lepton
flavors. However, the Yukawa couplings here are set to
their small, natural values expected from the seesaw
relation, Eq. (2). Therefore, even with large differences
in lepton flavor scattering rates, the baryon asymmetry in
regime I is not large enough to account for the observed
asymmetry unless the coherent oscillation time is maximal,
which requires a strong degeneracy between the masses of
N2 and N3. A mass degeneracy of ΔMN=MN ∼
Oð10−6–10−8Þ is needed, depending on Imω.
To illustrate this, we show in Fig. 4 the baryon

asymmetry for a set of parameters where the magnitude
of the Yukawa coupling F is held fixed, while the relative
rates of Le → N†, Lμ → N†, and Lτ → N† are allowed to
vary. We see that the asymmetry is largest when flavor
dependence on the scattering rates is significant; i.e., the
rates of ΓðLα → N†Þ are very different, especially the rates
of Lμ and Lτ. In this regime, the contribution from the Le
flavor asymmetry and scattering rate is subdominant, due to
the smallness of θ13 and the fact that m3 has the largest
Yukawa coupling to the sterile sector. Over the parameters
scanned in Fig. 4, the rate ΓðLe → N†Þ is typically ≲3% of
the corresponding Lμ and Lτ, and the asymmetry in Le is
≲10% of the Lμ and Lτ asymmetries.4 The asymmetry
vanishes when ΓðLμ → N†Þ=ΓðLτ → N†Þ ≈ 0.8, which is
when the difference in Lμ → N† and Lτ → N† rates exactly
compensates for the difference in flavor asymmetries.

3The same is true for the terms in the kinetic equations
generating the sterile neutrino asymmetries.
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This behavior is easily understood with the qualitative
lessons learned in previous sections. In this regime, the
Yukawa couplings are sufficiently small that equilibration
of the active and sterile neutrinos is irrelevant as it occurs
long after the electroweak time scale. As a result, the
asymmetries in individual lepton flavors remain unchanged
from their generation at the time of coherent sterile neutrino
oscillation to the sphaleron decoupling at TW. The baryon
asymmetry is determined by the slow transfer of asymme-
try from individual lepton flavors into the sterile sector,
Eq. (6), which generates a total lepton asymmetry. It is
therefore maximized with large differences in rates asso-
ciated with different lepton flavors.

B. Regime II

As discussed in Sec. II, the maximization of the baryon
asymmetry in this region is done by increasing the
scattering rates as much as possible while avoiding equili-
bration (and subsequent washout) before the electroweak
time scale, ΓðLα → N†Þ ∼H when T ∼ TW. This optimi-
zation is achieved by setting the Yukawa couplings to be
much larger than their natural seesaw relations through a
careful alignment of the different Yukawa couplings so
that jFj2=F2 ∼ coshð2ImωÞ ∼Oð102Þ.

To illustrate this, we show in Fig. 5 the magnitude of the
baryon asymmetry as a function of Yukawa coupling
magnitude. We set the Yukawa coupling magnitude by
changing Imω. Unlike in regime I, the Le flavor here is
important; although the flavor asymmetry in Le is typically
smaller than in Lμ or Lτ, it also equilibrates more slowly, and
so can be comparable to the asymmetries in Lμ or Lτ if the
latter are partially washed out. As expected, the magnitude of
the baryon asymmetry increases monotonically with the
Yukawa coupling, except for a small region where the
asymmetry changes sign due to the onset of Lτ → N†

equilibration, which modifies the total lepton asymmetry
as discussed in Sec. II. The total baryon asymmetry is
maximized in the region with ΓðLα → N†Þ ∼HðTWÞ. Any
further increase beyond this point results in an equilibration
time earlier than the electroweak scale and a precipitous
decrease in the baryon asymmetry.
For the parameter points in Fig. 5, we see that the

observed baryon asymmetry is obtained in regime II with
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FIG. 5 (color online). Baryon asymmetry (Bottom) and lepton
washout rates at T ¼ 140 GeV (Top) as a function of the Yukawa
coupling magnitude, which is parametrized by Imω. The plot
shows the continuous evolution from regime I to regime II. The
washout rates are shown for taus (top), muons, and electrons
(bottom); the dashed line in the upper plot shows the Hubble scale
at TW ¼ 140 GeV, while the dashed line in the lower plot shows
the observed YΔB ¼ 8.6 × 10−11. The asymmetry is maximized
around ΓðLe → N†Þ ∼ ΓðLμ → N†Þ ≈H. Other parameters held
fixed: MN ¼ 1 GeV, ΔMN ¼ 10−5 GeV, η ¼ −π=4, δ ¼ 3π=4,
Imω > 0.
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FIG. 4 (color online). Illustration of the importance of flavor-
dependent effects in generating a nonzero baryon asymmetry in
regime I. The baryon asymmetry is plotted as a function of the
ratio between the muon-sterile neutrino scattering rate and the
corresponding tau-sterile rate. The asymmetry is maximized
when the washout rates for μ and τ are substantially different,
as predicted by Eq. (6). The mass splittings are ΔMN ¼ 3 × 10−8

(blue, short dash), 10−7 (purple, solid), 3 × 10−7 GeV (black,
long dash). The ratio of muon to tau rates is varied by changing
the relative values of δ − η, while the overall MNS CP phase and
other parameters are held fixed (MN ¼ 1 GeV, ω ¼ π=4 − i=2,
δþ η ¼ π=2). The horizontal dashed line indicates the observed
baryon asymmetry.

4This is true except in a small window around
ΓðLμ → N†Þ=ΓðLτ → N†Þ ≈ 0.7, where the Lτ asymmetry be-
comes very small and the Le asymmetry is important.
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ΔMN=MN ∼ 10−5, which is less degenerate than in regime
I. However, this reduction in parameter tuning from mass
degeneracy is compensated by a tuning of the Yukawa
couplings that goes like one part in cosh 2Imω ∼Oð102Þ in
regime II according to Eq. (16). Therefore, the tuning in
regime II arises from alignments in both the sterile neutrino
masses and the Yukawa couplings.

C. Regime III

In regime III, the effects of large Yukawa couplings and
maximal differences in active-sterile neutrino scattering
rates combine to give the largest possible asymmetry. The
Yukawa couplings are set even larger than in regime II,
enhancing the generated baryon asymmetry. As expected,
such large Yukawas also cause the equilibration time scale
to occur earlier than the electroweak scale. If this were true
for all lepton flavors, it would have resulted in complete
washout of the asymmetry, which is phenomenologically
unacceptable. However, in this part of parameter space,
destructive interference in the Le → N† rate allows the
Le asymmetry to avoid early washout by remaining
out of equilibrium until the electroweak scale when
ΓðLe → N†Þ ≈HðTWÞ. This effect was first discussed in
the context of leptogenesis with three sterile neutrinos [10].
A strong destructive interference in the rate ΓðLe → N†Þ

is possible when Imω ≫ 1 and [10,23]

tan θ13 ¼
m2

m3

sin θ12; (28)

cosðδþ ηÞ ¼ −1: (29)

The parameters in Eq. (28) are fixed by oscillation data.
Interestingly, the current best-fit value of θ13 happens to be
very close to satisfying Eq. (28), leading to very strong
suppression of ΓðLe → N†Þ when the Majorana and Dirac
phases satisfy Eq. (29). In practice, the destructive inter-
ference is still very effective if δþ η are within about 10%
of this critical value, but cannot deviate much more than
this. The Le asymmetry generation rate is proportional
to sinð2ReωÞ in the destructive interference limit
cosðδþ ηÞ → 0, and so the baryon asymmetry is maxi-
mized for Reω ≈ π=4.
In Fig. 6, we show the baryon asymmetry for a choice of

parameters satisfying (29). The Yukawa couplings are
changed by varying Imω, and we demonstrate how the
asymmetry varies continuously from regimes I to III. As in
Fig. 5, the magnitude of the baryon asymmetry monoton-
ically increases (except when it changes sign at the point of
Lτ → N equilibration). Once again, the baryon asymmetry
is maximal when the Yukawa couplings have a value such
that Le is just coming into equilibrium at TW, while Lμ and
Lτ equilibrate at earlier times.
As a result of the enhanced asymmetry in regime III, the

required mass degeneracy for the baryon asymmetry of the

universe is the smallest of any region of parameter space.
However, even here a degeneracy of ΔMN=MN ∼ 10−3 is
necessary, as is a tuning of the Yukawa coupling of one part
in 104 according to Eq. (16), and an alignment of the CP
phases δþ η ≈ −π=2 to within 10%.

D. Tuning

To close this section, we show in Fig. 7 the tuning
necessary in the different regimes in one continuous plot.
We take the tuning to be the product of the tuning of the
mass splitting and the alignment of the Yukawa couplings,

tuning measure ¼ MN

ΔMN
coshð2ImωÞ: (30)

While such tunings or alignments are technically natural,
there is no explanation for their structure in the minimal
model. This might simply be a feature of nature, but it could
also be a hint for additional structure beyond the νMSM.
The case for considering an extended model becomes
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FIG. 6 (color online). Baryon asymmetry (Bottom) and lepton
washout rates at T ¼ 140 GeV (Top) as a function of the Yukawa
coupling magnitude, which is parametrized by Imω. The plot
shows the continuous evolution from regime I to regime III
for parameters exhibiting strong destructive interference in
ΓðLe → N†Þ. The curves are the same as Fig. 5. The asymmetry
is again maximized around ΓðLe → N†Þ ≈H. Other parameters
held fixed: MN ¼ 1 GeV, ΔMN ¼ 10−3 GeV, η ¼ δ ¼ −π=4,
Imω > 0.
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particularly cogent if it brings with it new observable
effects. We present one such extension in the following
section, show that it entirely alleviates the needed tuning,
and discuss its observability in on-going collider searches.

VI. BARYON ASYMMETRY WITH A
LEPTOPHILIC HIGGS

In the previous section, we saw that increasing the
Yukawa couplings can generally lead to larger asymmetry
generation. Schematically, we have that [2,6,7],

asymmetry

generation rate
∝ ImðFF†Þ2αα ∼

m2
νM2

N

hΦi4 coshð2ImωÞ: (31)

For very small Yukawas (regime I), the asymmetry gen-
eration rate is correspondingly small and one must tune the
mass splitting of the sterile neutrino so that the oscillation
time scale is as long as possible and approaches the
electroweak time scale. We saw that it is possible to
increase the asymmetry generation rate, and thereby
alleviate some of this tuning, by increasing the Yukawa
couplings (while keeping the seesaw relations intact) with
an alignment controlled by the parameter Imω (regime II).
However, this increase cannot proceed indefinitely since,
at some point, the equilibration time scale becomes as
early as the electroweak time scale. At this point, the
washout processes that kick in and act to reduce the
asymmetry scale as

asymmetry

washout rate
∝ ðFF†Þαα ∼

mνMN

hΦi2 coshð2ImωÞ: (32)

The scaling relations Eqs. (31) and (32) show that, while
one can initially enhance the asymmetry by increasing the
alignment in the Yukawas, coshð2ImωÞ ≫ 1, this gain is

saturated once the time scale of equilibration coincides with
the electroweak scale and washout processes become
relevant. Regime III circumvents this saturation and sup-
ports even stronger alignment in the Yukawas by having a
different equilibration time scale for the different lepton
flavors.
However, the above scaling relations suggest an alter-

native approach. The asymmetry generation rate, Eq. (31),
depends strongly on the value of the electroweak VEV, hΦi.
It can be greatly enhanced if the LH neutrino masses arise
from a new source of electroweak symmetry breaking.
Such a scenario can arise in a leptophilic Two Higgs
Doublet Model (2HDM), with one scalar coupling exclu-
sively to leptons and acquiring a much smaller VEV. This
idea was also mentioned in Ref. [10] as a way to alleviate
the needed alignment in the Yukawa couplings. Here,
however, we see that a smaller leptophilic Higgs VEV
has a much more pronounced effect than just tuning the
Yukawa couplings to be large in the minimal model
(jImωj ≫ 1): the asymmetry generation and washout rates
scale very differently with the VEV, while they have the
same scaling with Imω.

A. The model

A Z2 symmetry is typically required to prevent both
Higgs fields from coupling to the same fermions, inducing
tree-level flavor-changing neutral currents [29]. One pos-
sible choice is the leptophilic (or type IV) 2HDM:

Lleptophilic ¼ μ21jΦ1j2 − μ22jΦ2j2 −
λ1
4
jΦ1j4 −

λ2
4
jΦ2j4

þ λuQΦ1uc þ λdQΦ�
1d

c þ λlLΦ�
2E

c

þ FLΦ2N þ H:c: (33)

In this model, Φ1 is a SM-like Higgs giving mass to the
quarks, and Φ2 is a leptophilic Higgs giving mass to
the charged leptons and LH neutrinos. It is motivated by
the observation that the heaviest lepton masses are much
smaller than the heaviest quark masses, and might obtain
their masses through a field with a smaller VEV. Indeed,
λτ ∼Oð1Þ for hΦ2i ≈ 2 GeV.
If Φ2 acquires a VEV through a negative mass-squared

term in the potential, a prediction of the associated scalar
masses would be m2 ∼ λhΦli2. Collider searches rule out
the existence of any such charged states below 100 GeV.
Therefore, Φ2 must instead acquire a VEV through a linear
tadpole term in its potential. We assume this comes from a
mixing with the SM Higgs, which arises from additional
terms in the 2HDM potential:

V2HDM ⊃ μ2mixΦ1Φ�
2 þ H:c: (34)

μ2mix can be naturally smaller than μ21 and μ22 since it breaks
the Z2 symmetry.5 The ratio of VEVs is
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FIG. 7 (color online). Fine-tuning required to obtain the
observed baryon asymmetry, YΔB ¼ 8.6 × 10−11 according to
the tuning measure Eq. (30). The other parameters used are
(black, solid) η ¼ δ ¼ Reω ¼ π=4; (purple, dotted)
η ¼ δ ¼ −Reω ¼ −π=4; (blue, dashed) η ¼ 2.42, δ ¼ 0.5,
Reω ¼ π=2. For all points, ΔMN is fixed by imposing the
observed baryon asymmetry.
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tan β≡ hΦ1i
hΦ2i

≈
μ22
μ2mix

; (35)

which can account for the observed pattern hΦ1i ≫ hΦ2i
for μ2 ≫ μmix.

B. Asymmetry generation

To demonstrate the larger asymmetries possible in the
leptophilic 2HDM, we compute the baryon asymmetries
obtained in both the leptophilic 2HDM and the minimal
model, and we show their ratio in the left panel of Fig. 8. To
make a direct comparison, we choose a common set of
parameters for both models in regime III, where the effects
are most pronounced: MN ¼ 1 GeV, ΔMN ¼ 1 GeV,
η ¼ δ ¼ −Reω ¼ −π=4. For the leptophilic 2HDM, we
fix Imω ¼ 1 and take as a free parameter the VEV hΦ2i. For
the minimal model, we choose the value of Imω such that
the electron washout rate ΓðLe → N†Þ is equal to the rate
in the leptophilic 2HDM for each hΦ2i. The ratio of the
baryon asymmetry in the leptophilic 2HDM compared to
the minimal model grows quadratically as Φ2 decreases
from the SM value, as predicted by Eq. (31). We see in the
right panel of Fig. 8 that enhancements to the baryon
asymmetry of Oð103 − 104Þ are possible in the leptophilic
Higgs model over the minimal model. The resulting baryon
asymmetry in the leptophilic 2HDM is sufficiently large
that no mass degeneracy is required to obtain the observed
value. Therefore, the leptophilic 2HDM removes the need
for any tuning in both the masses of the sterile neutrinos
and the Yukawa couplings FαI if tan β ≈ 20–80. The same
conclusion holds true for many other values of the CP
phases and mixing angles.
One might wonder why such a complete elimination of

the tuning in the mass splitting is possible in the leptophilic
Higgs model but not in the νMSM. In other words, why is it
now possible to obtain the correct asymmetry with a much
shorter coherent oscillation time as compared to the
minimal model? The answer is found in the scaling
relations, Eqs. (31) and (32). In the minimal model, one
can only increase the Yukawa couplings through alignment,
coshð2ImωÞ ≫ 1. But since the asymmetry generation and
washout rates scale in the same way with coshð2ImωÞ, this
increase is saturated when the equilibration rate is as early
as the electroweak scale. Unfortunately, the baryon asym-
metry at the point of saturation is still too small, unless one
tunes the sterile-neutrino mass splitting to achieve a longer
coherent oscillation time. In our extended model with
smaller leptophilic Higgs VEV, the asymmetry generation
scales like ∼hΦ2i−4, which rises much faster with a smaller
VEV than the washout rate, ∼hΦ2i−2. The point of
saturation is still reached in the extended model, but
because the asymmetry generation rate increases more

than the washout rate, the point of saturation gives a
baryon asymmetry which is orders of magnitude larger.

C. Experimental implications of the leptophilic
Higgs model

In the leptophilic Higgs νMSM, which leads to the
observed baryon asymmetry without any tuning, there exist
new, weakly charged scalars. In a natural theory, the new
scalar masses are expected to lie below ∼TeV. Thus,
experimental studies of the Higgs sector can also act as
probes of physics related to leptogenesis.
The baryon asymmetry is largest in models where

tan β≡ hΦ1i
hΦ2i

≫ 1; (36)
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FIG. 8 (color online). (Top) Ratio of the baryon asymmetry in
the leptophilic Higgs model with Imω ¼ 1 to the asymmetry in
the minimal, single Higgs model with Imω set such that the Le
washout rate is the same in both scenarios for each data point. The
enhancement to the asymmetry from changing hΦ2i is quadrati-
cally larger than the tuned, minimal model. (Bottom) Baryon
asymmetry in the leptophilic Higgs model (top, purple) and
minimal model (bottom, black) with the Le washout rate the
same in both scenarios for each data point. The dashed line
indicates the observed baryon asymmetry of the universe. (Both)
Other parameters are fixed at MN ¼ 1 GeV, ΔMN ¼ 1 GeV,
η ¼ δ ¼ −Reω ¼ −π=4.

5For our purposes, other Z2-breaking terms such as jΦ1j2Φ1Φ�
2

can be absorbed into a redefinition of μmix.
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in which the Yukawa couplings of Φ2 to leptons are
enhanced. In the 2HDM with scalar mixing induced by
the potential (34), the ratio of VEVs is given by (35), and
the CP-even mixing angle is

sin α ≈
μ2mix

m2
h − μ22

; (37)

where m2
h ¼ λhΦ1i2=4 and we assume μ2mix ≪ m2

h − μ22.
When μ2 ≈mh, the above approximations break down,
and sin α ≈ 1=

ffiffiffi
2

p
.

1. Constraints from SM Higgs searches

Currently, the strongest constraints on the leptophilic
Higgs model are from measurements of the observed SM-
like Higgs decays. In the leptophilic model, the SM-like
Higgs has a modified τ Yukawa coupling

λτ → λτ tan β sin α ≈ λτ

�
μ22

m2
h − μ22

�
: (38)

Even though the SMHiggs doublet does not directly couple
to leptons, we see that its coupling to taus is actually
enhanced due to a combination of mixing with Φ2 and the
tan β enhancement of the lepton Yukawa couplings. With
μ2 ∼mh ≈ 126 GeV, the SM-like Higgs coupling to τþτ−
is so large that it is excluded by data of SM Higgs decays
into taus from the Large Hadron Collider (LHC); the
current bound is μ2 ≳ 220 GeV. In Fig. 9, we show
the current exclusion [30], along with the 2σ reach of
the 14 TeV LHC with 300 fb−1 of data, and the 2σ reach of
a 250 GeV International Linear Collider (ILC) with

250 fb−1 of data [31]. For this analysis, we calculated
the ΦSM → τþτ− signal strength with 2HDMC [32].

2. Direct searches for leptophilic Higgs

The leptophilic-Higgs-like scalars couple to the electro-
weak gauge bosons and can be directly produced at
colliders. Such searches are currently weaker than the
above constraints, but are relevant in extended models
where the Φl VEV and mixing with the SM are not
determined completely by (34), and therefore the modifi-
cation of the SM Higgs coupling is not as large as (38).
Direct searches may also be more relevant for higher
luminosities at the LHC. There is one new CP-even scalar
H0

l, a CP-odd scalar A0
l, and charged scalars H�

l . The
dominant production modes are pp → H0

l=A
0
l þH�

l →
3τ þ ντ (see Fig. 10). There is also a 4τ final state, but the
production cross section is smaller. The best channel to use
in searches for such final states has the same-sign taus
decay leptonically and the other tau(s) decay hadronically
[33]; the current constraints from CMS with 8 TeV, 19 fb−1
are mHl

¼ mAl
≲ 150 GeV [34]. The search in same-sign

dileptonsþ hadronic taus has a discovery potential ofml ≈
300 GeV for LHC14 with ∼200 fb−1. Combining this
channel with other proposed search modes (such as the
all-hadronic channel [35]) could have even higher reach.
Finally, we comment on the possibility that Φ2 only

gives mass to the neutrinos, while the charged leptons
acquire a mass through hΦ1i. In this scenario, the phe-
nomenology changes dramatically; instead of decaying
through the large τ Yukawa interaction, Φ2 can only decay
through either the coupling to sterile neutrinos or the
mixing with the SM-like Higgs. The latter is the more
likely possibility due to the smallness of the sterile neutrino
Yukawas FαI , in which case Φ2 looks exactly like a heavy
SM Higgs but with a much smaller single-production cross
section and with enhanced pair production. There are no
constraints on the leptophilic scalars Hl in this scenario,
although future searches in the “golden channel” Φ2 → 4l
may eventually provide constraints. A linear collider may
prove to be a better probe of such final states. If Hl instead
decays through the Yukawa coupling, then H�

l → l� þ N,
and H�

l looks like a slepton decaying to a massless
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1.0

2.0

1.5

leptophilic Higgs mass GeV

H
H

SM

LHC 7 8 TeV CMS

LHC 14 TeV, 300 fb

ILC 250 GeV, 250 fb

FIG. 9 (color online). Signal strength of SM Higgs decay to
τþτ− as a function of the leptophilic Higgs mass hl with
tan β ¼ 20. The enhancement of the τþτ− signal strength comes
from the modification of the SM Higgs coupling to taus (38). The
horizontal solid line is the current CMS 7þ 8 TeV 2σ bound
[30], and the horizontal dashed (dotted) lines show the 2σ reach
for LHC14 at 300 fb−1 (ILC at 250 GeV, 250 fb−1). The reach
estimates are from [31].

FIG. 10. Feynman diagram for production of the leptophilic
Higgs states at the LHC and their decays.
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neutralino. The lepton is most likely to be a μ or τ because,
in the normal hierarchy, these couple strongest toN. For the
nontuned models of leptogenesis, the Yukawa couplings
are large enough that H�

l decays promptly; the slepton
bounds constrain mHl

≲ 300 GeV with decays to muons
[30,36], and there are no constraints with decays to taus
above the LEP bound of 90 GeV [37].

VII. CONCLUSIONS

In this paper, we attempted to provide a comprehensive
and coherent overview of the mechanism of baryogenesis
through neutrino oscillations. Focusing on the physical
time scales involved in the problem rather than the under-
lying model parameters, we identified three broad regimes
depending on the relative ordering of this time scales (the
neutrino oscillation time scale, the equilibration time scale,
and the sphaleron decoupling time scale). While these
regimes are not new—they have been identified in past
works [2,5–10] either through scans or with individual
points—our work endeavors to clarify the physical basis
for these regimes and for their interconnectedness. On a
more quantitative level, our calculation also includes an
improvement upon previous calculations of the baryon
asymmetry by including the effects of scatterings between
left-handed leptons and the thermal bath during asymmetry
generation.
One of the less appealing features of this mechanism is

the need to fine-tune some of the model parameters. We
showed that this is fundamentally related to a certain
coincidence required of the physical time scales and that
a tuning of no less than one part in 105 according to
Eq. (30) is necessary throughout the parameter space. In
one regime the tuning is entirely in the mass terms of the
sterile neutrinos, while in other regimes it is also manifested
strongly in a certain alignment of the Yukawa couplings,
which allows them to be much larger than what the seesaw
relation, Eq. (2), would naïvely imply.
The fine-tuning of model parameters is an unavoidable

feature of the minimal model. In the last part of this work
we considered an extended model with an additional
electroweak Higgs boson that predominantly couples to
the sterile neutrinos and SM leptons. We showed that the
correct baryon asymmetry can be obtained with no tuning
of the sterile neutrino parameters if the leptophilic Higgs
boson has a VEV of order ∼GeV. This extra Higgs boson
can be searched for, and discovered, at the LHC.
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APPENDIX A: CASAS-IBARRA
PARAMETRIZATION

The Yukawa coupling FαI in Eq. (1) can be written as

FαI ¼
i

hΦiUν
ffiffiffiffiffiffi
mν

p
R

ffiffiffiffiffiffiffiffi
MN

p
; (A1)

where mν is the diagonal matrix of LH neutrino masses as
determined from oscillation data, Uν is the MNS LH
neutrino mixing matrix, and MN is the diagonal matrix
of sterile neutrino masses. For the normal hierarchy, and
with m1 ¼ 0, the decomposition of Uν and R are

Uν ¼
0
@

1 0 0

0 cos θ23 sin θ23
0 − sin θ23 cos θ23

1
Adiagðeiδ=2; 1; e−iδ=2Þ

×

0
@

cos θ13 0 sin θ13
0 1 0

− sin θ13 0 cos θ13

1
Adiagðe−iδ=2; 1; eiδ=2Þ

×

0
@

cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1

1
Adiagð1; e−iη; 1Þ; (A2)

R ¼
0
@

0 0

cosω sinω

− sinω cosω

1
A: (A3)

The θij are the usual mixing angles. In general, there is
another Majorana phase appearing in Uν, but it only
appears in terms proportional to m1, which we assume
to be zero as explained in Sec. III.

APPENDIX B: FULL DENSITY MATRIX
EVOLUTION EQUATIONS

In Sec. IV, we outlined the basic method for calculating
the baryon asymmetry, providing schematic evolution
equations for ρN, ρN̄ , and ρL−L̄ in Eqs. (20)–(22). It turns
out to be simpler to move to a different basis for the
sterile neutrino density matrices [6]:

δρþ ¼ ρN þ ρN̄
2

− ρeqL I2×2; (B1)

δρ− ¼ ρN − ρN̄ : (B2)
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In this basis, the sterile neutrinos are expressed in terms
of deviations from equilibrium: δρþ is the sterile CP-even
deviation from equilibrium, while δρ− is the sterile CP-odd
deviation from equilibrium. This basis has the nice property
that, in thermal equilibrium, δρþ, δρ−, and ρB−3Lα

all
vanish. Furthermore, when looking at individual terms
that generate an asymmetry, it can be convenient to separate
out the action of CP violation on sterile neutrino oscil-
lations themselves, which source δρ−, and the presence of
CP violation in L − N scattering, which involves Imω, as
well as the Dirac and Majorana CP phases from the MNS
matrix.
Before providing the full kinetic equations used in the

paper, we highlight an additional modification of the
evolution equations from [9]. In Sec. IV we parametrized
the rate ΓðL → N†Þ in Eq. (23) with the aid of the function
γavðTÞ. This function is shown in Fig. 11. Asaka and Ishida
observed that the assumption that the N production and L
destruction rates are parametrized by the same γavðTÞ is
erroneous: while at leading order, N production always
proceeds from SM initial states, some L destruction
processes have sterile neutrinos in the initial state and
are consequently suppressed by the out-of-equilibrium N
phase space density. For both 2 → 2 and 1↔2 scattering
processes, 1=3 of the lepton destruction processes are
suppressed by a factor of ρN .
The various contributions to γavðTÞ can be ex-

tracted from the analysis in [24]. We then modify

the lepton destruction rate such that the coefficient
changes as

γavðTÞ → 2

3
γavðTÞ þ ρN þ ρN̄

6
γavðTÞ: (B3)

Putting together all of the modifications due to the rotation
to the δρþ, δρ− basis, the transformation to the B − 3Lα

lepton charges, and the above modifications to the
scattering rates, we have

i
dδρþ
dt

¼ ½ReHN; δρþ� −
i
2
fReΓN; δρþg −

iT
4
γavðTÞðF†ρL−L̄F − FTρL−L̄F

�Þ

−
iT
24

γavðTÞ½fF†ρL−L̄F; 2δρþ þ δρ−g − fFTρL−L̄F
�; 2δρþ − δρ−g� þ

i
2
½ImHN; δρ−� þ

1

4
fImΓN; δρ−g; (B4)

i
dδρ−
dt

¼ ½ReHN; δρ−� −
i
2
fReΓN; δρ−g −

iT
2
γavðTÞðF†ρL−L̄F þ FTρL−L̄F

�Þ

−
iT
12

γavðTÞ½fF†ρL−L̄F; 2δρþ þ δρ−g þ fFTρL−L̄F
�; 2δρþ − δρ−g� þ 2i½ImHN; δρþ� þ fImΓN; δρþg; (B5)

i
dρB−3L
dt

¼ 3i
2
fΓL; ρL−L̄g þ

iT
2
γavðTÞ½Fð2δρþ þ δρ−ÞF† þ F�ð2δρþ − δρ−ÞFT�ρL−L̄

−
3iT
2

γavðTÞ½Fð2δρþ þ δρ−ÞF† − F�ð2δρþ − δρ−ÞFT�. (B6)

Here, we have defined

ðΓNÞIJ ¼ γavTðF†FÞIJ; (B7)

ðHNÞIJ ¼
T
8
ðF†FÞIJ þ

M2
I −M2

J

2T
; (B8)

ðΓLÞαβ ¼ γavTReðFF†Þαβ; (B9)

and ρL−L̄ can be expressed in terms of ρB−3L according
to Eq. (25).
As noted in [8], this system of differential equations is

“stiff” due to the fact that the sterile neutrino oscillation
frequency increases monotonically with time, and integrating
from an early time to tW can be very computationally
intensive. Fortunately, there is a workaround: washout cannot
equilibrate much before the weak scale or else the asymmetry
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FIG. 11 (color online). Temperature dependence of the coefficient
γavðTÞ in the sterile neutrino production rate as defined in Eq. (23).
We show the contributions from 1↔2 scattering, 2 → 2 scattering,
and the total leading order rate. All values are taken from [24].
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would be entirely wiped out, while oscillation frequencies
are very fast at tW only when the oscillations began at a
much earlier time. This separation of tosc ≪ tW allows us to
divide the equation evolution into two regimes. At early
times, when the oscillations are responsible for generating the
lepton asymmetries, we solve the full kinetic equations
above. At late times, the oscillations are rapid and the
contributions to the asymmetry average to zero, and so we
solve the same system of equations except that we set the off-
diagonal components to zero. The solutions are matched at
a time tmatch ¼ 500tosc, where

tosc ≈
ðMPl=1.66

ffiffiffiffiffi
g�

p Þ1=3
2ðM2

3 −M2
2Þ2=3

(B10)

is the time when oscillations become rapid. We have
checked numerically that at least 90% of the asymmetry
is generated by tmatch, and we have also done extensive
numerical checks of the validity of this two-stage solution.
When tosc ∼ tW, then it is fast to integrate the full
equations right up to tW.
Integration can also be slow when we include an

interpolating function representation of the numerical
coefficients γavðTÞ for the solution of the full equations.
Because these functions vary slowly with time, and the
rates are most relevant at the times of asymmetry generation
and washout, we set γav ¼ γavðtoscÞ for the first stage of the
solution. In the second stage of the solution, we incorporate
the full time dependence of γavðTÞ.
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